Repeated engagements in dry clutch systems could yield remarkable increase of clutch disk temperature. In dry clutch based transmissions like Automated Manual Transmissions and Dual Clutch Transmissions the overheating leads to poor control of gearshift quality due to unpredictable and fast change of frictional characteristic. Even permanent damage of clutch facings may occur. Under this light, this paper focusing on thermal effects to improve control performances and prevent uncomfortable engagements. To this aim, detailed analyses of dry clutch architecture have been carried out to understand the main phenomena which affect the clutch torque transmissibility. Moreover, a lumped thermal model has been developed to predict both the disk surface and cushion spring temperature in real-time environment. To validate the proposed thermal model, a non-linear least squares method has been used by comparing simulations with finite element results. A control strategy based on model predictive control and thermal compensation effects has been proposed to simulate vehicle launch manoeuvres in flat and up-hill road conditions with low and high initial clutch temperature as well. Finally, the proposed control approach has been compared with classic PI control strategy to prove its effectiveness.

Thermal Compensation Control Strategy in Automated Dry Clutch Engagement Dynamics and Launch Manoeuvre

Pisaturo M.
Investigation
;
Senatore A.
Investigation
2019-01-01

Abstract

Repeated engagements in dry clutch systems could yield remarkable increase of clutch disk temperature. In dry clutch based transmissions like Automated Manual Transmissions and Dual Clutch Transmissions the overheating leads to poor control of gearshift quality due to unpredictable and fast change of frictional characteristic. Even permanent damage of clutch facings may occur. Under this light, this paper focusing on thermal effects to improve control performances and prevent uncomfortable engagements. To this aim, detailed analyses of dry clutch architecture have been carried out to understand the main phenomena which affect the clutch torque transmissibility. Moreover, a lumped thermal model has been developed to predict both the disk surface and cushion spring temperature in real-time environment. To validate the proposed thermal model, a non-linear least squares method has been used by comparing simulations with finite element results. A control strategy based on model predictive control and thermal compensation effects has been proposed to simulate vehicle launch manoeuvres in flat and up-hill road conditions with low and high initial clutch temperature as well. Finally, the proposed control approach has been compared with classic PI control strategy to prove its effectiveness.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4730069
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact