Using large-scale numerical simulations we studied the kinetics of the 2d q-Potts model for q > 4 after a shallow subcritical quench from a high-temperature homogeneous configuration. This protocol drives the system across a first-order phase transition. The initial state is metastable after the quench and, for final temperatures close to the critical one, the system escapes from it via a multi-nucleation process. The ensuing relaxation towards equilibrium proceeds through coarsening with competition between the equivalent ground states. This process has been analyzed for different choices of the parameters such as the number of states and the final quench temperature.

Multinucleation in the first-order phase transition of the 2d Potts model

Corberi F.
Supervision
;
Esposito M.
Membro del Collaboration Group
;
2019-01-01

Abstract

Using large-scale numerical simulations we studied the kinetics of the 2d q-Potts model for q > 4 after a shallow subcritical quench from a high-temperature homogeneous configuration. This protocol drives the system across a first-order phase transition. The initial state is metastable after the quench and, for final temperatures close to the critical one, the system escapes from it via a multi-nucleation process. The ensuing relaxation towards equilibrium proceeds through coarsening with competition between the equivalent ground states. This process has been analyzed for different choices of the parameters such as the number of states and the final quench temperature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4730951
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact