The equilibrium and nonequilibrium properties of ferromagnetic systems may be affected by the long-range nature of the coupling interaction. Here we study the phase separation process of a one-dimensional Ising model in the presence of a power-law decaying coupling, J(r)=1/r1+σ with σ>0, and we focus on the two-time autocorrelation function C(t,tw)=⟨si(t)si(tw)⟩. We find that it obeys the scaling form C(t,tw)=f(L(tw)/L(t)), where L(t) is the typical domain size at time t, and where f(x) can only be of two types. For σ>1, when domain walls diffuse freely, f(x) falls in the nearest-neighbour (nn) universality class. Conversely, for σ≤1, when domain walls dynamics is driven, f(x) displays a new universal behavior. In particular, the so-called Fisher-Huse exponent, which characterizes the asymptotic behavior of f(x)≃x−λ for x≫1, is λ=1 in the nn universality class (σ>1) and λ=1/2 for σ≤1.

Universality in the time correlations of the long-range 1d Ising model

Corberi F.;Lippiello E.;Politi P.
2019

Abstract

The equilibrium and nonequilibrium properties of ferromagnetic systems may be affected by the long-range nature of the coupling interaction. Here we study the phase separation process of a one-dimensional Ising model in the presence of a power-law decaying coupling, J(r)=1/r1+σ with σ>0, and we focus on the two-time autocorrelation function C(t,tw)=⟨si(t)si(tw)⟩. We find that it obeys the scaling form C(t,tw)=f(L(tw)/L(t)), where L(t) is the typical domain size at time t, and where f(x) can only be of two types. For σ>1, when domain walls diffuse freely, f(x) falls in the nearest-neighbour (nn) universality class. Conversely, for σ≤1, when domain walls dynamics is driven, f(x) displays a new universal behavior. In particular, the so-called Fisher-Huse exponent, which characterizes the asymptotic behavior of f(x)≃x−λ for x≫1, is λ=1 in the nn universality class (σ>1) and λ=1/2 for σ≤1.
File in questo prodotto:
File Dimensione Formato  
final copia.pdf

accesso aperto

Descrizione: Articolo post-print
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4730954
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact