Obeticholic acid (OCA), a farnesoid-X-receptor (FXR) ligand, shown effective in reducing steatosis and fibrosis in NASH patients. However, OCA causes major side effects including pruritus, while increases the risk for liver decompensation in cirrhotic patients. Ursodeoxycholic acid (UDCA), is a safe and unexpensive bile acid used in the treatment of liver disorders whose mechanism of action is poorly defined. Here we have compared the effects of OCA and UDCA in a mouse model of NASH. In mice exposed to a diet rich in fat/cholesterol and fructose (HFD-F), treatment with OCA or UDCA effectively prevented body weight gain, insulin resistance, as demonstrated by OGTT, and AST plasma levels. After 12 weeks HFD-F mice developed liver microvesicular steatosis, inflammation and mild fibrosis, increased expression of inflammatory (TNFα, IL6, F4/80) and fibrosis (αSma, Col1α1, Tgfβ) markers, reduced liver expression of FXR, dysregulated liver FXR signaling and elevated levels of Tauro-α and β-muricholic acid (T-α and βMCA), two FXR antagonists in mice. Both compounds prevented these changes and improved liver histopathology. OCA reduced primary bile acid synthesis worsening the T-CA/T-βMCA ratio. UDCA effectively transactivated GPBAR1 in vitro. By RNAseq analysis we found that among over 2400 genes modulated by the HFD-F, only 32 and 60 genes were modulated by OCA and UDCA, with only 3 genes (Dbp, Adh7, Osgin1) being modulated by both agents. Both agents partially prevented the intestinal dysbiosis. CONCLUSIONS: UDCA is a GPBAR1 ligand and exerts beneficial effects in a rodent model of NASH by activating non-overlapping pathway with OCA.

Ursodeoxycholic acid is a GPBAR1 agonist and resets liver/intestinal FXR signaling in a model of diet-induced dysbiosis and NASH

Monti, Maria Chiara;
2019-01-01

Abstract

Obeticholic acid (OCA), a farnesoid-X-receptor (FXR) ligand, shown effective in reducing steatosis and fibrosis in NASH patients. However, OCA causes major side effects including pruritus, while increases the risk for liver decompensation in cirrhotic patients. Ursodeoxycholic acid (UDCA), is a safe and unexpensive bile acid used in the treatment of liver disorders whose mechanism of action is poorly defined. Here we have compared the effects of OCA and UDCA in a mouse model of NASH. In mice exposed to a diet rich in fat/cholesterol and fructose (HFD-F), treatment with OCA or UDCA effectively prevented body weight gain, insulin resistance, as demonstrated by OGTT, and AST plasma levels. After 12 weeks HFD-F mice developed liver microvesicular steatosis, inflammation and mild fibrosis, increased expression of inflammatory (TNFα, IL6, F4/80) and fibrosis (αSma, Col1α1, Tgfβ) markers, reduced liver expression of FXR, dysregulated liver FXR signaling and elevated levels of Tauro-α and β-muricholic acid (T-α and βMCA), two FXR antagonists in mice. Both compounds prevented these changes and improved liver histopathology. OCA reduced primary bile acid synthesis worsening the T-CA/T-βMCA ratio. UDCA effectively transactivated GPBAR1 in vitro. By RNAseq analysis we found that among over 2400 genes modulated by the HFD-F, only 32 and 60 genes were modulated by OCA and UDCA, with only 3 genes (Dbp, Adh7, Osgin1) being modulated by both agents. Both agents partially prevented the intestinal dysbiosis. CONCLUSIONS: UDCA is a GPBAR1 ligand and exerts beneficial effects in a rodent model of NASH by activating non-overlapping pathway with OCA.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4732414
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 32
social impact