This article deals with the mathematical derivation and the validation over benchmark examples of a numerical method for the solution of a finite-strain holonomic (rate-independent) Cosserat plasticity problem for materials, possibly with microstructure. Two improvements are made in contrast to earlier approaches: First, the micro-rotations are parameterized with the help of an Euler–Rodrigues formula related to quaternions. Secondly, as main result, a novel two-pass preconditioning scheme for searching the energy-minimizing solutions based on the limited memory Broyden–Fletcher–Goldstein–Shanno quasi-Newton method is proposed that consists of a predictor step and a corrector-iteration. After outlining the necessary adaptations to the model, numerical simulations compare the performance and efficiency of the new and the old algorithm. The proposed numerical model can be effectively employed for studying the mechanical response of complicated materials featuring large size effects.

Mathematical analysis of a solution method for finite-strain holonomic plasticity of Cosserat materials

Amendola A.
2020-01-01

Abstract

This article deals with the mathematical derivation and the validation over benchmark examples of a numerical method for the solution of a finite-strain holonomic (rate-independent) Cosserat plasticity problem for materials, possibly with microstructure. Two improvements are made in contrast to earlier approaches: First, the micro-rotations are parameterized with the help of an Euler–Rodrigues formula related to quaternions. Secondly, as main result, a novel two-pass preconditioning scheme for searching the energy-minimizing solutions based on the limited memory Broyden–Fletcher–Goldstein–Shanno quasi-Newton method is proposed that consists of a predictor step and a corrector-iteration. After outlining the necessary adaptations to the model, numerical simulations compare the performance and efficiency of the new and the old algorithm. The proposed numerical model can be effectively employed for studying the mechanical response of complicated materials featuring large size effects.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4732627
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact