Mesoglycan is a fibrinolytic compound but recently promising pro-healing effects in skin wound repair have been reported. Previously, we have showed that mesoglycan activates human keratinocytes, fibroblasts and endothelial cells and induces the secretion of microvesicles (EVs), particularly exosomes, from keratinocytes. These EVs may contribute to wound healing since they further activate cells generating an autocrine loop with a positive feedback. In this work, EVs isolated from keratinocytes, treated with mesoglycan, have been tested on human fibroblasts and endothelial cells. The in vitro investigation has been carried out through Wound-Healing/invasion assays to analyze cell motility and assess the differentiation process. Then, the formation of capillary-like structures by human endothelial cells has been performed to evaluate in vitro angiogenesis. We found that EVs secreted from keratinocytes treated with mesoglycan promote fibroblasts and endothelial cells migration and invasion. Furthermore, these receiving cells acquire a mesenchymal phenotype. Additionally, the angiogenesis appears strongly enhanced in presence of this kind of EVs. In conclusion, we show that EVs deriving from keratinocytes trigger a paracrine positive feedback able to further amplify the effects of mesoglycan. This mechanism adds up to the autocrine loop previously reported and culminates with the activation of fibroblasts and endothelial cells. Particularly, this activation is amplified by the action of growth factors as FGF-2 (Fibroblast Growth Factor-2) for the fibroblasts and by VEGF (Vascular Endothelial Growth Factor) for the endothelial cells.

Mesoglycan induces the secretion of microvesicles by keratinocytes able to activate human fibroblasts and endothelial cells: A novel mechanism in skin wound healing

Belvedere, Raffaella
Investigation
;
Pessolano, Emanuela
Investigation
;
Porta, Amalia
Membro del Collaboration Group
;
Tosco, Alessandra
Membro del Collaboration Group
;
Parente, Luca
Membro del Collaboration Group
;
Petrella, Antonello
Writing – Original Draft Preparation
2020-01-01

Abstract

Mesoglycan is a fibrinolytic compound but recently promising pro-healing effects in skin wound repair have been reported. Previously, we have showed that mesoglycan activates human keratinocytes, fibroblasts and endothelial cells and induces the secretion of microvesicles (EVs), particularly exosomes, from keratinocytes. These EVs may contribute to wound healing since they further activate cells generating an autocrine loop with a positive feedback. In this work, EVs isolated from keratinocytes, treated with mesoglycan, have been tested on human fibroblasts and endothelial cells. The in vitro investigation has been carried out through Wound-Healing/invasion assays to analyze cell motility and assess the differentiation process. Then, the formation of capillary-like structures by human endothelial cells has been performed to evaluate in vitro angiogenesis. We found that EVs secreted from keratinocytes treated with mesoglycan promote fibroblasts and endothelial cells migration and invasion. Furthermore, these receiving cells acquire a mesenchymal phenotype. Additionally, the angiogenesis appears strongly enhanced in presence of this kind of EVs. In conclusion, we show that EVs deriving from keratinocytes trigger a paracrine positive feedback able to further amplify the effects of mesoglycan. This mechanism adds up to the autocrine loop previously reported and culminates with the activation of fibroblasts and endothelial cells. Particularly, this activation is amplified by the action of growth factors as FGF-2 (Fibroblast Growth Factor-2) for the fibroblasts and by VEGF (Vascular Endothelial Growth Factor) for the endothelial cells.
File in questo prodotto:
File Dimensione Formato  
Belvedere et al, EJP 2020.pdf

non disponibili

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.93 MB
Formato Adobe PDF
2.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4732700
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact