In this paper, a modeling study focused on optimizing the PAA disinfection performance in a full-scale contact tank currently operated at the Nocera (Italy) Wastewater Treatment Plant is presented. The disinfection process was monitored for over 2 weeks by collecting full-scale data on plant variability in flow, disinfectant demand/decay and microbial concentrations. A computational fluid dynamics (CFD) model of the contact tank describing the PAA disinfection process was developed. Four disinfection scenarios were analysed using an Eulerian-Lagrangian approach: (a) PAA disinfection under the existing conditions; (b) PAA disinfection with PAA pre-mixed prior to the contact tank; (c) PAA disinfection with PAA dosed with 8 injection points distributed over the entire length of the inlet weir; (d) PAA disinfection in an optimized plug-flow contact tank. All these scenarios were analysed for the same operating conditions, i.e. fixed flow, PAA demand/decay and inactivation kinetics. The model-based analysis clearly revealed that the optimized contact tank (scenario d) was able to achieve a much higher contact and extended between microorganisms and disinfectant thus resulting into a five-fold increase in microbial inactivation.

Undestending and optimizing peracetic acid disinfection processes using computational fluid dynamics: the case study of Nocera (Italy) wastewater treatment plant

Maffettone R.;Rizzo L.;Lofrano G.;Carotenuto M.;
2017

Abstract

In this paper, a modeling study focused on optimizing the PAA disinfection performance in a full-scale contact tank currently operated at the Nocera (Italy) Wastewater Treatment Plant is presented. The disinfection process was monitored for over 2 weeks by collecting full-scale data on plant variability in flow, disinfectant demand/decay and microbial concentrations. A computational fluid dynamics (CFD) model of the contact tank describing the PAA disinfection process was developed. Four disinfection scenarios were analysed using an Eulerian-Lagrangian approach: (a) PAA disinfection under the existing conditions; (b) PAA disinfection with PAA pre-mixed prior to the contact tank; (c) PAA disinfection with PAA dosed with 8 injection points distributed over the entire length of the inlet weir; (d) PAA disinfection in an optimized plug-flow contact tank. All these scenarios were analysed for the same operating conditions, i.e. fixed flow, PAA demand/decay and inactivation kinetics. The model-based analysis clearly revealed that the optimized contact tank (scenario d) was able to achieve a much higher contact and extended between microorganisms and disinfectant thus resulting into a five-fold increase in microbial inactivation.
978-3-319-58420-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4733032
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact