Nowadays social media are the main means for conducting discussions and sharing opinions. The huge amount of information generated by social media users is helpful for predicting outcomes of real-world events in different fields, including business, politics and the entertainment industry. In this paper, we studied the possibility of forecasting the success of music albums by analyzing heterogeneous data sources spanning from social media (Twitter, Instagram and Facebook) to mainstream American newspapers (e.g., New York Times, Rolling Stones). The idea is to exploit music albums' pre-release hype and post-release approval to predict the album's rank with reference to the well-known Billboard 200 album chart, which tabulates the weekly popularity of music albums in the USA. To predict the success of a music album, that is its rank in the chart, we identified metrics based on the messages' posting trend, the variation of the sentiment associated to such messages, the number of followers of the album's author, and the importance of the people who talk about it. To evaluate the effectiveness of the proposed metrics we have compared the prediction performances of several models based on supervised learning approaches among those most used in literature. As a result, we obtained that the Random Forest approach is able to predict the music album rank in the Billboard 200 Chart with an expected accuracy of 97%. As a further validation, using this specific model, we also conducted an additional real usage test obtaining an almost matching result (accuracy of 94%).

The Conundrum of Success in Music: Playing it or Talking About it?

Roberto De Prisco;Alfonso Guarino;Delfina Malandrino;Nicola Lettieri;Rocco Zaccagnino
2019

Abstract

Nowadays social media are the main means for conducting discussions and sharing opinions. The huge amount of information generated by social media users is helpful for predicting outcomes of real-world events in different fields, including business, politics and the entertainment industry. In this paper, we studied the possibility of forecasting the success of music albums by analyzing heterogeneous data sources spanning from social media (Twitter, Instagram and Facebook) to mainstream American newspapers (e.g., New York Times, Rolling Stones). The idea is to exploit music albums' pre-release hype and post-release approval to predict the album's rank with reference to the well-known Billboard 200 album chart, which tabulates the weekly popularity of music albums in the USA. To predict the success of a music album, that is its rank in the chart, we identified metrics based on the messages' posting trend, the variation of the sentiment associated to such messages, the number of followers of the album's author, and the importance of the people who talk about it. To evaluate the effectiveness of the proposed metrics we have compared the prediction performances of several models based on supervised learning approaches among those most used in literature. As a result, we obtained that the Random Forest approach is able to predict the music album rank in the Billboard 200 Chart with an expected accuracy of 97%. As a further validation, using this specific model, we also conducted an additional real usage test obtaining an almost matching result (accuracy of 94%).
File in questo prodotto:
File Dimensione Formato  
The_Conundrum_of_Success_in_Music_Playing_it_or_Talking_About_it.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4733149
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact