We propose a heuristic derivation of Casimir effect in the context of minimal length theories based on a Generalized Uncertainty Principle (GUP). By considering a GUP with only a quadratic term in the momentum, we compute corrections to the standard formula of Casimir energy for the parallel-plate geometry, the sphere and the cylindrical shell. For the first configuration, we show that our result is consistent with the one obtained via more rigorous calculations in Quantum Field Theory (QFT). Experimental developments are finally discussed.
Heuristic derivation of Casimir effect in minimal length theories
Blasone, MassimoMembro del Collaboration Group
;Lambiase, GaetanoMembro del Collaboration Group
;Luciano, Giuseppe Gaetano
Membro del Collaboration Group
;Petruzziello, LucianoMembro del Collaboration Group
;Scardigli, FabioMembro del Collaboration Group
2020
Abstract
We propose a heuristic derivation of Casimir effect in the context of minimal length theories based on a Generalized Uncertainty Principle (GUP). By considering a GUP with only a quadratic term in the momentum, we compute corrections to the standard formula of Casimir energy for the parallel-plate geometry, the sphere and the cylindrical shell. For the first configuration, we show that our result is consistent with the one obtained via more rigorous calculations in Quantum Field Theory (QFT). Experimental developments are finally discussed.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Heuristic derivation of Casimir from minimal lenght theories.pdf
non disponibili
Descrizione: VoR
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Copyright dell'editore
Dimensione
674.55 kB
Formato
Adobe PDF
|
674.55 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1912.00241v1.pdf
Open Access dal 15/01/2021
Descrizione: AAM
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Copyright dell'editore
Dimensione
582.06 kB
Formato
Adobe PDF
|
582.06 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.