In the last 40 years, the aeronautical industry has managed to move from a specialized sector to a worldwide leading industry. Companies, governments and associations all over the world acknowledge the importance of the aviation industry in supporting global development and the economy. However, aviation will be facing new challenges related to sustainability and performance in a technological environment in evolution. To succeed, the aeronautical industry must keep innovation as one of its main assets. It must master a wide range of technologies and then collaborate to integrate them into an aircraft design and development program. A collaborative approach to innovation is key to achieve these goals. The main purpose of this paper is to analyze the structure of technological innovation networks in the aviation industry and to characterize the map of the "Aviation Technology Space". Two different approaches and methods are used. In one approach, we performed a bibliometric network analysis of aviation research scientific publications using a keyword co-occurrence analysis method to map the aerospace collaboration structures. Complementarily, we performed a patent analysis to evaluate the innovation capacity of the aviation industry in the cutting-edge technologies previously identified. From the results of this analysis, the paper provides recommendations for future innovation and research policies to allow the sector to fulfill the demanding goals by the year 2050.

Flight path 2050 and ACARE goals for maintaining and extending industrial leadership in aviation: A map of the aviation technology space

Tucci V.
Formal Analysis
;
Mattera L.;
2019-01-01

Abstract

In the last 40 years, the aeronautical industry has managed to move from a specialized sector to a worldwide leading industry. Companies, governments and associations all over the world acknowledge the importance of the aviation industry in supporting global development and the economy. However, aviation will be facing new challenges related to sustainability and performance in a technological environment in evolution. To succeed, the aeronautical industry must keep innovation as one of its main assets. It must master a wide range of technologies and then collaborate to integrate them into an aircraft design and development program. A collaborative approach to innovation is key to achieve these goals. The main purpose of this paper is to analyze the structure of technological innovation networks in the aviation industry and to characterize the map of the "Aviation Technology Space". Two different approaches and methods are used. In one approach, we performed a bibliometric network analysis of aviation research scientific publications using a keyword co-occurrence analysis method to map the aerospace collaboration structures. Complementarily, we performed a patent analysis to evaluate the innovation capacity of the aviation industry in the cutting-edge technologies previously identified. From the results of this analysis, the paper provides recommendations for future innovation and research policies to allow the sector to fulfill the demanding goals by the year 2050.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4733888
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 16
social impact