Lignosulfonates are important by-products of the paper industry and may be transformed into different commodities. We studied the molecular properties of ammonium (LS-AM) and calcium Lignosulfonates (LS-C) and evaluated their bioactivity towards the early development of maize plantlets. The FT-IR, C-13 NMR and H-1-(13)CHSQC-NMR spectra showed that the two lignosulfonates varied in hydroxyl, sulfonate and phenolic content, while DOSY-NMR spectroscopy suggested a similar diffusivity. High Performance Size Exclusion Chromatography (HPSEC) was used to simulate the effects of root-exuded acids and describe the conformational dynamics of both LS substrates in acidic aqueous solutions. This technique showed that LS-C was stabilized by the divalent Ca2+ counterion, thus showing a greater conformational stability than LS-AM, whose components could not be as efficiently aggregated by the monovalent NH4+ counter-ion. The plant bioassays revealed that LS-AM enhanced the elongation of the root system, whereas LS-C significantly increased both total and shoot plant weights. We concluded that the lignosulfonate bioactivity on plant growth depended on the applied concentrations, theirmolecular properties and conformational stability.

Replacing calcium with ammonium counterion in lignosulfonates from paper mills affects their molecular properties and bioactivity

Pierluigi Mazzei;
2018-01-01

Abstract

Lignosulfonates are important by-products of the paper industry and may be transformed into different commodities. We studied the molecular properties of ammonium (LS-AM) and calcium Lignosulfonates (LS-C) and evaluated their bioactivity towards the early development of maize plantlets. The FT-IR, C-13 NMR and H-1-(13)CHSQC-NMR spectra showed that the two lignosulfonates varied in hydroxyl, sulfonate and phenolic content, while DOSY-NMR spectroscopy suggested a similar diffusivity. High Performance Size Exclusion Chromatography (HPSEC) was used to simulate the effects of root-exuded acids and describe the conformational dynamics of both LS substrates in acidic aqueous solutions. This technique showed that LS-C was stabilized by the divalent Ca2+ counterion, thus showing a greater conformational stability than LS-AM, whose components could not be as efficiently aggregated by the monovalent NH4+ counter-ion. The plant bioassays revealed that LS-AM enhanced the elongation of the root system, whereas LS-C significantly increased both total and shoot plant weights. We concluded that the lignosulfonate bioactivity on plant growth depended on the applied concentrations, theirmolecular properties and conformational stability.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4735443
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact