Antimicrobial resistance is spreading massively in the world and is becoming one of the main health threats of the 21st century. One of the possible strategies to overcome this problem is to modify the known classes of antibiotics in a rational way, with the aim of tuning their efficacy. In this paper, we present the synthesis and the evaluation of the biological activity of a series of two β-lactam bearing cephalosporin derivatives, in which an additional isolated azetidinone ring, bearing different substituents, is joined to the classical cephalosporanic nucleus by a chain of variable length. A computational approach has been also applied in order to predict the molecular interactions between some representative derivatives and selected penicillin-binding proteins, the natural targets of β-lactam antibiotics. All these derivatives are active against Gram-positive bacteria, with MIC100 comparable or even better than that of the reference antibiotic ceftriaxone, and show no or very low cytotoxic activity on different cell lines. Overall, these molecules appear to be able to exert their activity in particular against microorganisms belonging to some of the species more involved in the development of multidrug resistance.

New compounds for a good old class: Synthesis of two Β-lactam bearing cephalosporins and their evaluation with a multidisciplinary approach

Vigliotta G.
Investigation
;
Verdino A.;Caputo I.;Martucciello S.;Soriente A.;Marabotti A.
Supervision
;
De Rosa M.
Supervision
2020-01-01

Abstract

Antimicrobial resistance is spreading massively in the world and is becoming one of the main health threats of the 21st century. One of the possible strategies to overcome this problem is to modify the known classes of antibiotics in a rational way, with the aim of tuning their efficacy. In this paper, we present the synthesis and the evaluation of the biological activity of a series of two β-lactam bearing cephalosporin derivatives, in which an additional isolated azetidinone ring, bearing different substituents, is joined to the classical cephalosporanic nucleus by a chain of variable length. A computational approach has been also applied in order to predict the molecular interactions between some representative derivatives and selected penicillin-binding proteins, the natural targets of β-lactam antibiotics. All these derivatives are active against Gram-positive bacteria, with MIC100 comparable or even better than that of the reference antibiotic ceftriaxone, and show no or very low cytotoxic activity on different cell lines. Overall, these molecules appear to be able to exert their activity in particular against microorganisms belonging to some of the species more involved in the development of multidrug resistance.
File in questo prodotto:
File Dimensione Formato  
BMC_2019_1128_Revision 2_V0.pdf

non disponibili

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.41 MB
Formato Adobe PDF
3.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4736100
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact