The force distribution proposed by codes, which in many cases is framed in the equivalent static force procedure, likely leads to design structures with non-uniform drift distribution in terms of inter-storey drift and ductility demands. This can lead to an unbalanced drift demand at certain storeys. This phenomenon may also amass cyclic damage to the dissipative elements at this very storey, therefore increasing the probability of premature failure for low-cycle fatigue. This work proposes a new force design distribution that accounts for higher mode effects and limits the displacement concentration at any storey thus improving the dissipative capacity of the whole structures. The main advantage of the proposed method stands in its formulation, which allows to spare any previous set up with structural analyses. The proposed force distribution has been applied to multi-degree-of-freedom systems to check its effectiveness, and the results have been compared with other proposals. In addition, in order to obtain a further validation of the proposed force distribution, the results obtained by using a genetic algorithm have been evaluated and compared. Additionally, the results provided in this work validate the proposed procedure to develop a more efficient lateral load pattern.

An optimal seismic force pattern for uniform drift distribution

Montuori R.;Nastri E.;Tagliafierro B.
2019-01-01

Abstract

The force distribution proposed by codes, which in many cases is framed in the equivalent static force procedure, likely leads to design structures with non-uniform drift distribution in terms of inter-storey drift and ductility demands. This can lead to an unbalanced drift demand at certain storeys. This phenomenon may also amass cyclic damage to the dissipative elements at this very storey, therefore increasing the probability of premature failure for low-cycle fatigue. This work proposes a new force design distribution that accounts for higher mode effects and limits the displacement concentration at any storey thus improving the dissipative capacity of the whole structures. The main advantage of the proposed method stands in its formulation, which allows to spare any previous set up with structural analyses. The proposed force distribution has been applied to multi-degree-of-freedom systems to check its effectiveness, and the results have been compared with other proposals. In addition, in order to obtain a further validation of the proposed force distribution, the results obtained by using a genetic algorithm have been evaluated and compared. Additionally, the results provided in this work validate the proposed procedure to develop a more efficient lateral load pattern.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4736918
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact