The hydrogen evolution reaction (HER), adopting seawater as an electrolyte solution, is a promising and more sustainable alternative for the production of hydrogen, yet requiring more economic, highly efficient and stable electrocatalysts than the current ones. Herein, the synthesis of a Ni, Ru, Ir-based and graphene-supported nano-structured catalyst through an easily scalable, cost-effective, surfactant-free approach has been proposed. XRD, SEM, TEM images and EDX maps showed the formation of trimetallic NiRuIr alloy nanoparticles (average diameter: 8 nm) supported on a few-layer graphene. After characterization, the HER stability and activity of the sample were tested in a 0.5 M H2SO4, in a KCl neutral solution as well as in real seawater. In the acidic electrolyte environment a 0.06 V overpotential was maintained even after 11,000 cycles and the Tafel slope recorded was very low (28 mV/dec). In the neutral solution a very low overpotential (0.10 V) and a low Tafel slope (72 mV/dec) were also obtained. Furthermore, in real seawater the sample exhibits a Tafel slope of 48 mV/dec, maintains a low overpotential of 0.08 V for 250 cycles and a constant current density for 200 h of test without significant losses and with almost a 100% hydrogen production efficiency. The results obtained proved the remarkable HER performance of the synthesized electrocatalyst, especially in real seawater in virtue of synergistic alloying effects and the presence of the graphene support.

Active and stable graphene supporting trimetallic alloy-based electrocatalyst for hydrogen evolution by seawater splitting

Sarno M.
;
Ponticorvo E.;Scarpa D.
2020-01-01

Abstract

The hydrogen evolution reaction (HER), adopting seawater as an electrolyte solution, is a promising and more sustainable alternative for the production of hydrogen, yet requiring more economic, highly efficient and stable electrocatalysts than the current ones. Herein, the synthesis of a Ni, Ru, Ir-based and graphene-supported nano-structured catalyst through an easily scalable, cost-effective, surfactant-free approach has been proposed. XRD, SEM, TEM images and EDX maps showed the formation of trimetallic NiRuIr alloy nanoparticles (average diameter: 8 nm) supported on a few-layer graphene. After characterization, the HER stability and activity of the sample were tested in a 0.5 M H2SO4, in a KCl neutral solution as well as in real seawater. In the acidic electrolyte environment a 0.06 V overpotential was maintained even after 11,000 cycles and the Tafel slope recorded was very low (28 mV/dec). In the neutral solution a very low overpotential (0.10 V) and a low Tafel slope (72 mV/dec) were also obtained. Furthermore, in real seawater the sample exhibits a Tafel slope of 48 mV/dec, maintains a low overpotential of 0.08 V for 250 cycles and a constant current density for 200 h of test without significant losses and with almost a 100% hydrogen production efficiency. The results obtained proved the remarkable HER performance of the synthesized electrocatalyst, especially in real seawater in virtue of synergistic alloying effects and the presence of the graphene support.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4737744
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 36
social impact