We have studied the low temperature electrical transport properties of La-x Sr1-xCuO2 thin films grown by oxide molecular beam epitaxy on (1 1 0) GdScO3 and TbScO3 substrates. The transmission electron microscopy measurements and the x-ray diffraction analysis confirmed the epitaxy of the obtained films and the study of their normal state transport properties, removing the ambiguity regarding the truly conducting layer, allowed to highlight the presence of a robust hidden Fermi liquid charge transport in the low temperature properties of infinite layer electron doped cuprate superconductors. These results are in agreement with recent observations performed in other p and n doped cuprate materials and point toward a general description of the superconducting and normal state properties in these compounds.
Low temperature hidden Fermi-liquid charge transport in under doped La x Sr1−x CuO2 infinite layer electron-doped thin films
C. Sacco;A. Galdi;N. Coppola;L. Maritato
2019-01-01
Abstract
We have studied the low temperature electrical transport properties of La-x Sr1-xCuO2 thin films grown by oxide molecular beam epitaxy on (1 1 0) GdScO3 and TbScO3 substrates. The transmission electron microscopy measurements and the x-ray diffraction analysis confirmed the epitaxy of the obtained films and the study of their normal state transport properties, removing the ambiguity regarding the truly conducting layer, allowed to highlight the presence of a robust hidden Fermi liquid charge transport in the low temperature properties of infinite layer electron doped cuprate superconductors. These results are in agreement with recent observations performed in other p and n doped cuprate materials and point toward a general description of the superconducting and normal state properties in these compounds.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.