The copolymerization of renewable monomers such as ocimene (O), myrcene (M), and farnesene (F) with butadiene (B), promoted by dichloro{1,4-dithiabutanediyl-2,2′-bis[4,6-bis(2-phenyl-2-propyl)phenoxy]}titanium (1) activated by modified methylalumoxane (m-MAO) under mild reaction conditions, was investigated. Copolymers in a wide range of compositions were obtained through a judicious control of the alimentation feed (up to 85% of terpene incorporated in the case of poly(ocimene-butadiene) (POB)). Analysis of POB, poly(myrcene-butadiene) (PMB), and poly(farnesene-butadiene) (PFB) microstructures revealed the good stereoselectivity of 1, both in the butadiene (up to 95%) and in the terpene (up to 92%, 71%, and 86% for O, M, and F, respectively) insertion. For all these new materials, a complete 13C NMR assignment was performed, revealing a multiblock structure. A sample of POB was also evaluated as a component in a model tread compound leading to improved mechanical properties with respect to the corresponding plain butadiene rubbers.

Toward More Sustainable Elastomers: Stereoselective Copolymerization of Linear Terpenes with Butadiene

Lamparelli D. H.;Paradiso V.;Proto A.;Capacchione C.
2020-01-01

Abstract

The copolymerization of renewable monomers such as ocimene (O), myrcene (M), and farnesene (F) with butadiene (B), promoted by dichloro{1,4-dithiabutanediyl-2,2′-bis[4,6-bis(2-phenyl-2-propyl)phenoxy]}titanium (1) activated by modified methylalumoxane (m-MAO) under mild reaction conditions, was investigated. Copolymers in a wide range of compositions were obtained through a judicious control of the alimentation feed (up to 85% of terpene incorporated in the case of poly(ocimene-butadiene) (POB)). Analysis of POB, poly(myrcene-butadiene) (PMB), and poly(farnesene-butadiene) (PFB) microstructures revealed the good stereoselectivity of 1, both in the butadiene (up to 95%) and in the terpene (up to 92%, 71%, and 86% for O, M, and F, respectively) insertion. For all these new materials, a complete 13C NMR assignment was performed, revealing a multiblock structure. A sample of POB was also evaluated as a component in a model tread compound leading to improved mechanical properties with respect to the corresponding plain butadiene rubbers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4740613
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 41
social impact