Persulfate (PS)-activated, iron-based heterogeneous catalysts have attracted significant attention as a potential advanced and sustainable water purification system. Herein, a novel Fe3O4 impregnated graphene oxide (Fe3O4@GO)-activated persulfate system (Fe3O4@GO+K2S2O8) was synthesized by following a sustainable protocol and was tested on real wastewater containing dye pollutants. In the presence of the PS-activated system, the degradation efficiency of Rhodamine B (RhB) was significantly increased to a level of 95% compared with that of Fe3O4 (25%). The influences of different operational parameters, including solution pH, persulfate dosage, and RhB concentration, were systemically evaluated. This system maintained its catalytic activity and durability with a negligible amount of iron leached during successive recirculation experiments. The degradation intermediates were further identified through reactive oxygen species (ROS) studies, where surface-bound SO4- was found to be dominant radical for RhB degradation. Moreover, the degradation mechanism of RhB in the Fe3O4@GO+K2S2O8 system was discussed. Finally, the results indicate that the persulfate-activated Fe3O4@GO catalyst provided an effective pathway for the degradation of dye pollutants in real wastewater treatment.

New sustainable approach for the production of Fe3O4/Graphene oxide-activated persulfate system for dye removal in real wastewater

Pervez M. N.
;
He W.;Zarra T.;Naddeo V.;Zhao Y.
2020-01-01

Abstract

Persulfate (PS)-activated, iron-based heterogeneous catalysts have attracted significant attention as a potential advanced and sustainable water purification system. Herein, a novel Fe3O4 impregnated graphene oxide (Fe3O4@GO)-activated persulfate system (Fe3O4@GO+K2S2O8) was synthesized by following a sustainable protocol and was tested on real wastewater containing dye pollutants. In the presence of the PS-activated system, the degradation efficiency of Rhodamine B (RhB) was significantly increased to a level of 95% compared with that of Fe3O4 (25%). The influences of different operational parameters, including solution pH, persulfate dosage, and RhB concentration, were systemically evaluated. This system maintained its catalytic activity and durability with a negligible amount of iron leached during successive recirculation experiments. The degradation intermediates were further identified through reactive oxygen species (ROS) studies, where surface-bound SO4- was found to be dominant radical for RhB degradation. Moreover, the degradation mechanism of RhB in the Fe3O4@GO+K2S2O8 system was discussed. Finally, the results indicate that the persulfate-activated Fe3O4@GO catalyst provided an effective pathway for the degradation of dye pollutants in real wastewater treatment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4745309
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 66
social impact