In the worldwide context of graft shortage, several strategies have been explored to increase the number of grafts available for liver transplantation (LT). These include the use of marginal and living donors, split livers, and the improvement of marginal donor grafts (machine perfusion). However, recent advances in the understanding of liver organogenesis, stem cells, and matrix biology provide novel insights in tissue engineering. Today, the newest technologies and discoveries open the door to the development of new methods for organ implementation such as the recellularization of natural scaffolds, liver organoids, bio-printing, and tissue or generation of chimeric organs. These approaches might potentially to generate an unlimited source of grafts (allogenic or chimeric) which will be used in the near future for LT or as a temporary bridge toward LT. This qualitative review focuses on all methods of organ implementation and highlights the newest developments in tissue engineering and regenerative medicine.

From deceased to bioengineered graft: New frontiers in liver transplantation

Schiavo L;
2019-01-01

Abstract

In the worldwide context of graft shortage, several strategies have been explored to increase the number of grafts available for liver transplantation (LT). These include the use of marginal and living donors, split livers, and the improvement of marginal donor grafts (machine perfusion). However, recent advances in the understanding of liver organogenesis, stem cells, and matrix biology provide novel insights in tissue engineering. Today, the newest technologies and discoveries open the door to the development of new methods for organ implementation such as the recellularization of natural scaffolds, liver organoids, bio-printing, and tissue or generation of chimeric organs. These approaches might potentially to generate an unlimited source of grafts (allogenic or chimeric) which will be used in the near future for LT or as a temporary bridge toward LT. This qualitative review focuses on all methods of organ implementation and highlights the newest developments in tissue engineering and regenerative medicine.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4746828
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact