Abietane diterpenoids (ADs), synthesized in the roots of different Salvia species, such as aethiopinone, 1-oxoaethiopinone, salvipisone, and ferruginol, have a variety of known biological activities. We have shown that aethiopinone has promising cytotoxic activity against several human tumor cell lines, including the breast adenocarcinoma MCF7, HeLa, epithelial carcinoma, prostate adenocarcinoma PC3, and human melanoma A375. The low content of these compounds in natural sources, and the limited possibility to synthesize them chemically at low cost, prompted us to optimize the production of abietane diterpenoids by targeting genes of the methylerythritol phosphate (MEP) pathway, from which they are derived. Here, we report our current and ongoing efforts to boost the metabolic flux towards this interesting class of compounds in Salvia sclarea hairy roots (HRs). Silencing the gene encoding the ent-copalyl-diphosphate synthase gene (entCPPS), acting at the lateral geranylgeranyl pyrophosphate (GGPP) competitive gibberellin route, enhanced the content of aethiopinone and other ADs in S. sclarea HRs, indicating indirectly that the GGPP pool is a metabolic constraint to the accumulation of ADs. This was confirmed by overexpressing the GGPPS gene (geranyl-geranyl diphosphate synthase) which triggered also a significant 8-fold increase of abietane diterpene content above the basal constitutive level, with a major boosting effect on aethiopinone accumulation in S. sclarea HRs. A significant accumulation of aethiopinone and other AD compounds was also achieved by overexpressing the CPPS gene (copalyl diphosphate synthase) pointing to this biosynthetic step as another potential metabolic target for optimizing the biosynthesis of this class of compounds. However, by co-expressing of GGPPS and CPPS genes, albeit significant, the increase of abietane diterpenoids was less effective than that obtained by overexpressing the two genes individually. Taken together, the results presented here add novel and instrumental knowledge to a rational design of a hairy root-based platform to yield reliable amounts of aethiopinone and other ADs for a deeper understanding of their molecular pharmacological targets and potential future commercialization.

Boosting the Synthesis of Pharmaceutically Active Abietane Diterpenes in S. sclarea Hairy Roots by Engineering the GGPPS and CPPS Genes

Vaccaro M. C.;Alfieri M.;De Tommasi N.;Leone A.
2020

Abstract

Abietane diterpenoids (ADs), synthesized in the roots of different Salvia species, such as aethiopinone, 1-oxoaethiopinone, salvipisone, and ferruginol, have a variety of known biological activities. We have shown that aethiopinone has promising cytotoxic activity against several human tumor cell lines, including the breast adenocarcinoma MCF7, HeLa, epithelial carcinoma, prostate adenocarcinoma PC3, and human melanoma A375. The low content of these compounds in natural sources, and the limited possibility to synthesize them chemically at low cost, prompted us to optimize the production of abietane diterpenoids by targeting genes of the methylerythritol phosphate (MEP) pathway, from which they are derived. Here, we report our current and ongoing efforts to boost the metabolic flux towards this interesting class of compounds in Salvia sclarea hairy roots (HRs). Silencing the gene encoding the ent-copalyl-diphosphate synthase gene (entCPPS), acting at the lateral geranylgeranyl pyrophosphate (GGPP) competitive gibberellin route, enhanced the content of aethiopinone and other ADs in S. sclarea HRs, indicating indirectly that the GGPP pool is a metabolic constraint to the accumulation of ADs. This was confirmed by overexpressing the GGPPS gene (geranyl-geranyl diphosphate synthase) which triggered also a significant 8-fold increase of abietane diterpene content above the basal constitutive level, with a major boosting effect on aethiopinone accumulation in S. sclarea HRs. A significant accumulation of aethiopinone and other AD compounds was also achieved by overexpressing the CPPS gene (copalyl diphosphate synthase) pointing to this biosynthetic step as another potential metabolic target for optimizing the biosynthesis of this class of compounds. However, by co-expressing of GGPPS and CPPS genes, albeit significant, the increase of abietane diterpenoids was less effective than that obtained by overexpressing the two genes individually. Taken together, the results presented here add novel and instrumental knowledge to a rational design of a hairy root-based platform to yield reliable amounts of aethiopinone and other ADs for a deeper understanding of their molecular pharmacological targets and potential future commercialization.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4748711
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact