In this study, we investigate the electrical transport properties of back-gated field-effect transistors in which the channel is realized with two-dimensional transition metal dichalcogenide nanosheets, namely palladium diselenide (PdSe2) and molybdenum disulfide (MoS2). The effects of the environment (pressure, gas type, electron beam irradiation) on the electrical properties are the subject of an intense experimental study that evidences how PdSe2-based devices can be reversibly tuned from a predominantly n-type conduction (under high vacuum) to a p-type conduction (at atmospheric pressure) by simply modifying the pressure. Similarly, we report that, in MoS2-based devices, the transport properties are affected by pressure and gas type. In particular, the observed hysteresis in the transfer characteristics is explained in terms of gas absorption on the MoS2 surface due to the presence of a large number of defects. Moreover, we demonstrate the monotonic (increasing) dependence of the width of the hysteresis on decreasing the gas adsorption energy. We also report the effects of electron beam irradiation on the transport properties of two-dimensional field-effect transistors, showing that low fluences of the order of few e-/nm2 are sufficient to cause appreciable modifications to the transport characteristics. Finally, we profit from our experimental setup, realized inside a scanning electron microscope and equipped with piezo-driven nanoprobes, to perform a field emission characterization of PdSe2 and MoS2 nanosheets at cathode–anode separation distances as small as 200 nm.

Air Pressure, Gas Exposure and Electron Beam Irradiation of 2D Transition Metal Dichalcogenides

Di Bartolomeo, Antonio
Writing – Original Draft Preparation
;
Pelella, Aniello
Formal Analysis
;
Grillo, Alessandro
Investigation
;
Urban, Francesca
Investigation
;
Giubileo, Filippo
Writing – Review & Editing
2020

Abstract

In this study, we investigate the electrical transport properties of back-gated field-effect transistors in which the channel is realized with two-dimensional transition metal dichalcogenide nanosheets, namely palladium diselenide (PdSe2) and molybdenum disulfide (MoS2). The effects of the environment (pressure, gas type, electron beam irradiation) on the electrical properties are the subject of an intense experimental study that evidences how PdSe2-based devices can be reversibly tuned from a predominantly n-type conduction (under high vacuum) to a p-type conduction (at atmospheric pressure) by simply modifying the pressure. Similarly, we report that, in MoS2-based devices, the transport properties are affected by pressure and gas type. In particular, the observed hysteresis in the transfer characteristics is explained in terms of gas absorption on the MoS2 surface due to the presence of a large number of defects. Moreover, we demonstrate the monotonic (increasing) dependence of the width of the hysteresis on decreasing the gas adsorption energy. We also report the effects of electron beam irradiation on the transport properties of two-dimensional field-effect transistors, showing that low fluences of the order of few e-/nm2 are sufficient to cause appreciable modifications to the transport characteristics. Finally, we profit from our experimental setup, realized inside a scanning electron microscope and equipped with piezo-driven nanoprobes, to perform a field emission characterization of PdSe2 and MoS2 nanosheets at cathode–anode separation distances as small as 200 nm.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4749875
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact