Novel nanotechnologies represent the most attractive and innovative tools to date exploited by cosmetic companies to improve the effectiveness of their formulations. In this context, nanoliposomes have had a great impact in topical preparations and dermocosmetics, allowing the transcutaneous penetration and absorption of several active ingredients and improving the stability of sensitive molecules. Despite the recent boom of this class of delivery systems, their industrial production is still limited by the lack of easily scalable production techniques. In this work, nanoliposomes for the topical administration of vitamin D3, K2, E, and curcumin, molecules with high antioxidant and skin curative properties but unstable and poorly absorbable, were produced through a novel simil-microfluidic technique. The developed high-yield semi continuous method is proposed as an alternative to face the problems linked with low productive conventional methods in order to produce antioxidant formulations with improved features. The novel technique has allowed to obtain a massive production of stable antioxidant vesicles of an 84–145 nm size range, negatively charged, and characterized by high loads and encapsulation efficiencies. The obtained products as well as the developed high-performance technology make the achieved formulations very interesting for potential topical applications in the cosmetics/cosmeceutical field.

Simil-Microfluidic Nanotechnology in Manufacturing of Liposomes as Hydrophobic Antioxidants Skin Release Systems

Sabrina Bochicchio;Annalisa Dalmoro;Veronica De Simone;Gaetano Lamberti;Anna Angela Barba
2020-01-01

Abstract

Novel nanotechnologies represent the most attractive and innovative tools to date exploited by cosmetic companies to improve the effectiveness of their formulations. In this context, nanoliposomes have had a great impact in topical preparations and dermocosmetics, allowing the transcutaneous penetration and absorption of several active ingredients and improving the stability of sensitive molecules. Despite the recent boom of this class of delivery systems, their industrial production is still limited by the lack of easily scalable production techniques. In this work, nanoliposomes for the topical administration of vitamin D3, K2, E, and curcumin, molecules with high antioxidant and skin curative properties but unstable and poorly absorbable, were produced through a novel simil-microfluidic technique. The developed high-yield semi continuous method is proposed as an alternative to face the problems linked with low productive conventional methods in order to produce antioxidant formulations with improved features. The novel technique has allowed to obtain a massive production of stable antioxidant vesicles of an 84–145 nm size range, negatively charged, and characterized by high loads and encapsulation efficiencies. The obtained products as well as the developed high-performance technology make the achieved formulations very interesting for potential topical applications in the cosmetics/cosmeceutical field.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4750308
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact