We study quantum corrections at the horizon scale of a black hole induced by a Generalized Uncertainty Principle (GUP) with a quadratic term in the momentum. The interplay between quantum mechanics and gravity manifests itself into a non-zero uncertainty in the location of the black hole radius, which turns out to be larger than the usual Schwarzschild radius. We interpret such an effect as a correction which makes the horizon disappear, as it happens in other models of quantum black holes already considered in literature. We name this kind of horizonless compact objects GUP stars. We also investigate some phenomenological aspects in the astrophysical context of binary systems and gravitational wave emission by discussing Love numbers, quasi-normal modes and echoes, and studying their behavior as functions of the GUP deformation parameter. Finally, we preliminarily explore the possibility to constrain such a parameter with future astrophysical experiments.
Phenomenology of GUP stars
Buoninfante, LucaMembro del Collaboration Group
;Lambiase, GaetanoMembro del Collaboration Group
;Luciano, Giuseppe GaetanoMembro del Collaboration Group
;Petruzziello, LucianoMembro del Collaboration Group
2020-01-01
Abstract
We study quantum corrections at the horizon scale of a black hole induced by a Generalized Uncertainty Principle (GUP) with a quadratic term in the momentum. The interplay between quantum mechanics and gravity manifests itself into a non-zero uncertainty in the location of the black hole radius, which turns out to be larger than the usual Schwarzschild radius. We interpret such an effect as a correction which makes the horizon disappear, as it happens in other models of quantum black holes already considered in literature. We name this kind of horizonless compact objects GUP stars. We also investigate some phenomenological aspects in the astrophysical context of binary systems and gravitational wave emission by discussing Love numbers, quasi-normal modes and echoes, and studying their behavior as functions of the GUP deformation parameter. Finally, we preliminarily explore the possibility to constrain such a parameter with future astrophysical experiments.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.