Although in recent years we have witnessed an explosion of the scientific research in the recognition of facial soft biometrics such as gender, age and expression with deep neural networks, the recognition of ethnicity has not received the same attention from the scientific community. The growth of this field is hindered by two related factors: on the one hand, the absence of a dataset sufficiently large and representative does not allow an effective training of convolutional neural networks for the recognition of ethnicity; on the other hand, the collection of new ethnicity datasets is far from simple and must be carried out manually by humans trained to recognize the basic ethnicity groups using the somatic facial features. To fill this gap in the facial soft biometrics analysis, we propose the VGGFace2 Mivia Ethnicity Recognition (VMER) dataset, composed by more than 3,000,000 face images annotated with 4 ethnicity categories, namely African American, East Asian, Caucasian Latin and Asian Indian. The final annotations are obtained with a protocol which requires the opinion of three people belonging to different ethnicities, in order to avoid the bias introduced by the well-known other race effect. In addition, we carry out a comprehensive performance analysis of popular deep network architectures, namely VGG-16, VGG-Face, ResNet-50 and MobileNet v2. Finally, we perform a cross-dataset evaluation to demonstrate that the deep network architectures trained with VMER generalize on different test sets better than the same models trained on the largest ethnicity dataset available so far. The ethnicity labels of the VMER dataset and the code used for the experiments are available upon request at https://mivia.unisa.it.

Benchmarking deep network architectures for ethnicity recognition using a new large face dataset

Greco A.
;
Percannella G.;Vento M.;Vigilante V.
2020

Abstract

Although in recent years we have witnessed an explosion of the scientific research in the recognition of facial soft biometrics such as gender, age and expression with deep neural networks, the recognition of ethnicity has not received the same attention from the scientific community. The growth of this field is hindered by two related factors: on the one hand, the absence of a dataset sufficiently large and representative does not allow an effective training of convolutional neural networks for the recognition of ethnicity; on the other hand, the collection of new ethnicity datasets is far from simple and must be carried out manually by humans trained to recognize the basic ethnicity groups using the somatic facial features. To fill this gap in the facial soft biometrics analysis, we propose the VGGFace2 Mivia Ethnicity Recognition (VMER) dataset, composed by more than 3,000,000 face images annotated with 4 ethnicity categories, namely African American, East Asian, Caucasian Latin and Asian Indian. The final annotations are obtained with a protocol which requires the opinion of three people belonging to different ethnicities, in order to avoid the bias introduced by the well-known other race effect. In addition, we carry out a comprehensive performance analysis of popular deep network architectures, namely VGG-16, VGG-Face, ResNet-50 and MobileNet v2. Finally, we perform a cross-dataset evaluation to demonstrate that the deep network architectures trained with VMER generalize on different test sets better than the same models trained on the largest ethnicity dataset available so far. The ethnicity labels of the VMER dataset and the code used for the experiments are available upon request at https://mivia.unisa.it.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4750525
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact