Smoothed Particle Hydrodynamics (SPH) method is used here to simulate a heaving point-absorber with a Power Take-Off system (PTO). The SPH-based code DualSPHysics is first validated with experimental data of regular waves interacting with the point-absorber. Comparison between the numerical and experimental heave displacement and velocity of the device show a good agreement for a given regular wave condition and different configurations of the PTO system. The validated numerical tool is then employed to investigate the efficiency of the proposed system. The efficiency, which is defined here as the ratio between the power absorbed by the point-absorber and its theoretical maximum, is obtained for different wave conditions and several arrangements of the PTO. Finally, the effects of highly energetic sea states on the buoy are examined through alternative configurations of the initial system. A survivability study is performed by computing the horizontal and vertical forces exerted by focused waves on the wave energy converter (WEC). The yield criterion is used to determine that submerging the heaving buoy at a certain depth is the most effective strategy to reduce the loads acting on the WEC and its structure, while keeping the WEC floating at still water level is the worst-case scenario.

Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics

Tagliafierro, Bonaventura
Membro del Collaboration Group
;
Viccione, Giacomo
Membro del Collaboration Group
2020-01-01

Abstract

Smoothed Particle Hydrodynamics (SPH) method is used here to simulate a heaving point-absorber with a Power Take-Off system (PTO). The SPH-based code DualSPHysics is first validated with experimental data of regular waves interacting with the point-absorber. Comparison between the numerical and experimental heave displacement and velocity of the device show a good agreement for a given regular wave condition and different configurations of the PTO system. The validated numerical tool is then employed to investigate the efficiency of the proposed system. The efficiency, which is defined here as the ratio between the power absorbed by the point-absorber and its theoretical maximum, is obtained for different wave conditions and several arrangements of the PTO. Finally, the effects of highly energetic sea states on the buoy are examined through alternative configurations of the initial system. A survivability study is performed by computing the horizontal and vertical forces exerted by focused waves on the wave energy converter (WEC). The yield criterion is used to determine that submerging the heaving buoy at a certain depth is the most effective strategy to reduce the loads acting on the WEC and its structure, while keeping the WEC floating at still water level is the worst-case scenario.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4751065
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 42
social impact