As petrochemical resources become increasingly scarce and expensive, much attention has been focused on renewable resources from biomass as alternative options for producing basic building blocks for chemical manufacturing. Catalytic olefin metathesis represents a powerful tool to transform biosourced structural motifs in valuable commodity, fine, and specialty chemicals. In that respect, the appropriate choice of the catalyst is the key issue of each metathesis transformation. The current study examines the influence of different N-heterocyclic carbene (NHC) ligands containing one or two N-alkyl substituents on the efficiency of Hoveyda–Grubbs-type catalysts in the cross-metathesis reaction of ethyl oleate with cis-1,4-diacetoxy-2-butene and cross-metathesis of eugenol acetate with cis-1,4-dichloro-2-butene. Interestingly, the introduction of alkyl N-substituents in the NHC ligand was revealed as beneficial for catalytic performances in the examined cross-metathesis (CM) reactions, leading to higher activity and/or selectivity than those observed in the presence of the classical, commercially available Hoveyda–Grubbs second generation catalyst (HGII).

NHC ligand effects on Ru-catalyzed cross-metathesis of renewable materials

Grisi F.
2020-01-01

Abstract

As petrochemical resources become increasingly scarce and expensive, much attention has been focused on renewable resources from biomass as alternative options for producing basic building blocks for chemical manufacturing. Catalytic olefin metathesis represents a powerful tool to transform biosourced structural motifs in valuable commodity, fine, and specialty chemicals. In that respect, the appropriate choice of the catalyst is the key issue of each metathesis transformation. The current study examines the influence of different N-heterocyclic carbene (NHC) ligands containing one or two N-alkyl substituents on the efficiency of Hoveyda–Grubbs-type catalysts in the cross-metathesis reaction of ethyl oleate with cis-1,4-diacetoxy-2-butene and cross-metathesis of eugenol acetate with cis-1,4-dichloro-2-butene. Interestingly, the introduction of alkyl N-substituents in the NHC ligand was revealed as beneficial for catalytic performances in the examined cross-metathesis (CM) reactions, leading to higher activity and/or selectivity than those observed in the presence of the classical, commercially available Hoveyda–Grubbs second generation catalyst (HGII).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4751087
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact