The transport of heat and momentum will exhibit non-linear and nonlocal behavior in extreme conditions, including the limited spatial scale in nanosystems. In this work, we present an analogy analysis between non-Fourier heat conduction and non-Newtonian momentum transport. Similar to the key assumptions in the thermomass model, we derived a new governing equation for momentum transport in nanosystems, which predicts the varying effective viscosity in steady flow. This shear thinning effect will be apparent in nano-channel flow where the velocity gradient and the momentum transport flux are huge. Molecular dynamics simulation is further performed in Lennard-Jones fluid and hard sphere gas at the nanoscale. The calculated viscosity decreases with the shear rate, agreeing with the prediction of our proposed model.
An analogy analysis between one-dimensional non-Fourier heat conduction and non-Newtonian flow in nanosystems
Sellitto, AntonioWriting – Original Draft Preparation
2021-01-01
Abstract
The transport of heat and momentum will exhibit non-linear and nonlocal behavior in extreme conditions, including the limited spatial scale in nanosystems. In this work, we present an analogy analysis between non-Fourier heat conduction and non-Newtonian momentum transport. Similar to the key assumptions in the thermomass model, we derived a new governing equation for momentum transport in nanosystems, which predicts the varying effective viscosity in steady flow. This shear thinning effect will be apparent in nano-channel flow where the velocity gradient and the momentum transport flux are huge. Molecular dynamics simulation is further performed in Lennard-Jones fluid and hard sphere gas at the nanoscale. The calculated viscosity decreases with the shear rate, agreeing with the prediction of our proposed model.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.