Deep convolution neural networks (DCNNs) enable effective methods to predict the melanoma classes otherwise found with ultrasonic extraction. However, gathering large datasets in local hospitals in Sweden can take years. Small datasets will result in models with poor accuracy and insufficient generalization ability, which has a great impact on the result. This paper proposes to use a K-Fold cross validation approach based on a DCNN algorithm working on a small sample dataset. The performance of the model is verified via a Vgg16 extracting the features. The experimental results reveal that the model built by the approach proposed in this paper can effectively achieve a better prediction and enhance the accuracy of the model, which proves that K-Fold can achieve better performance on a small skin cancer dataset.

Deep Melanoma classification with K-Fold Cross-Validation for Process optimization

De Santis L.;Carratù M.;Sommella P.;
2020-01-01

Abstract

Deep convolution neural networks (DCNNs) enable effective methods to predict the melanoma classes otherwise found with ultrasonic extraction. However, gathering large datasets in local hospitals in Sweden can take years. Small datasets will result in models with poor accuracy and insufficient generalization ability, which has a great impact on the result. This paper proposes to use a K-Fold cross validation approach based on a DCNN algorithm working on a small sample dataset. The performance of the model is verified via a Vgg16 extracting the features. The experimental results reveal that the model built by the approach proposed in this paper can effectively achieve a better prediction and enhance the accuracy of the model, which proves that K-Fold can achieve better performance on a small skin cancer dataset.
2020
978-1-7281-5386-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4752388
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 2
social impact