The SYCL standard promises to enable high productivity in heterogeneous programming of a broad range of parallel devices, including multicore CPUs, GPUs, and FPGAs. Its modern and expressive C++ API design, as well as flexible task graph execution model give rise to ample optimization opportunities at run-time, such as the overlapping of data transfers and kernel execution. However, it is not clear which of the existing SYCL implementations perform such scheduling optimizations, and to what extent. Furthermore, SYCL’s high level of abstraction may raise concerns about sacrificing performance for ease of use. Benchmarks are required to accurately assess the performance behavior of high-level programming models such as SYCL. To this end, we present SYCL-Bench, a versatile benchmark suite for device characterization and runtime benchmarking, written in SYCL. We experimentally demonstrate the effectiveness of SYCL-Bench by performing device characterization of the NVIDIA TITAN X GPU, and by evaluating the efficiency of the hipSYCL and ComputeCpp SYCL implementations.

SYCL-bench: A versatile cross-platform benchmark suite for heterogeneous computing

Cosenza B.;
2020-01-01

Abstract

The SYCL standard promises to enable high productivity in heterogeneous programming of a broad range of parallel devices, including multicore CPUs, GPUs, and FPGAs. Its modern and expressive C++ API design, as well as flexible task graph execution model give rise to ample optimization opportunities at run-time, such as the overlapping of data transfers and kernel execution. However, it is not clear which of the existing SYCL implementations perform such scheduling optimizations, and to what extent. Furthermore, SYCL’s high level of abstraction may raise concerns about sacrificing performance for ease of use. Benchmarks are required to accurately assess the performance behavior of high-level programming models such as SYCL. To this end, we present SYCL-Bench, a versatile benchmark suite for device characterization and runtime benchmarking, written in SYCL. We experimentally demonstrate the effectiveness of SYCL-Bench by performing device characterization of the NVIDIA TITAN X GPU, and by evaluating the efficiency of the hipSYCL and ComputeCpp SYCL implementations.
2020
978-3-030-57674-5
978-3-030-57675-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4753088
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 5
social impact