Background: The humanized monoclonal antibody benralizumab targets the α subunit of the interleukin-5 (IL-5) receptor and the FcγRIIIa receptor expressed by natural killer cells. Through this dual mechanism of action, benralizumab neutralizes the pro-eosinophil functions of IL-5 and promotes eosinophil apoptosis. Objectives and methods: The present real-life study aimed to evaluate, in 22 allergic patients with severe eosinophilic asthma, the effects of benralizumab on asthma exacerbations and lung hyperinflation. Results: In this regard here we show that, after 24 weeks of add-on treatment, benralizumab completely depleted peripheral blood eosinophils (from 810 to 0 cells/μL; p < 0.0001), and significantly decreased both asthma exacerbation number (from 4 to 0; p < 0.0001) and residual volume (from 2720 to 2300 mL; p < 0.01). Moreover, at the same time point (24 weeks) benralizumab also increased pre-bronchodilator FEV1 (from 1295 to 1985 mL; p < 0.0001), FVC (from 2390 to 2974 mL; p < 0.0001), FEF25−75 (from 0.6 to 1.42 L/sec; p < 0.0001), IC (from 1940 to 2460 mL; not significant), and ACT score (from 14.73 to 22.95; p < 0.0001), as well as reduced prednisone intake (from 25 to 0 mg; p < 0.0001). Conclusion: In conclusion, our results suggest that via its anti-eosinophil actions benralizumab improved airflow limitation, lung hyperinflation, and respiratory symptoms, as well as lowered asthma exacerbation rate and abrogated OCS consumption in most patients.

Real-Life effects of benralizumab on exacerbation number and lung hyperinflation in atopic patients with severe eosinophilic asthma

Vatrella A.;
2020-01-01

Abstract

Background: The humanized monoclonal antibody benralizumab targets the α subunit of the interleukin-5 (IL-5) receptor and the FcγRIIIa receptor expressed by natural killer cells. Through this dual mechanism of action, benralizumab neutralizes the pro-eosinophil functions of IL-5 and promotes eosinophil apoptosis. Objectives and methods: The present real-life study aimed to evaluate, in 22 allergic patients with severe eosinophilic asthma, the effects of benralizumab on asthma exacerbations and lung hyperinflation. Results: In this regard here we show that, after 24 weeks of add-on treatment, benralizumab completely depleted peripheral blood eosinophils (from 810 to 0 cells/μL; p < 0.0001), and significantly decreased both asthma exacerbation number (from 4 to 0; p < 0.0001) and residual volume (from 2720 to 2300 mL; p < 0.01). Moreover, at the same time point (24 weeks) benralizumab also increased pre-bronchodilator FEV1 (from 1295 to 1985 mL; p < 0.0001), FVC (from 2390 to 2974 mL; p < 0.0001), FEF25−75 (from 0.6 to 1.42 L/sec; p < 0.0001), IC (from 1940 to 2460 mL; not significant), and ACT score (from 14.73 to 22.95; p < 0.0001), as well as reduced prednisone intake (from 25 to 0 mg; p < 0.0001). Conclusion: In conclusion, our results suggest that via its anti-eosinophil actions benralizumab improved airflow limitation, lung hyperinflation, and respiratory symptoms, as well as lowered asthma exacerbation rate and abrogated OCS consumption in most patients.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4754158
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
social impact