Fatigue crack-growth of mechanical components is stochastic in nature and deterministic approaches do not allow for its complete study. Primary sources of this stochasticity can be: the inherent variability of material properties, the nature of service load fluctuations, the approximations assumed by the algorithms to calculate the main fracture parameters. This work reports a stochastic approach to the fatigue crack-growth in a railway axle under variability of different input parameters. The approach is used to predict the probability distribution of the residual fatigue life of a railway axle in presence of defects taking into account multiple sources of uncertainty.
Stochastic approach to fatigue crack-growth simulation for a railway axle under input data variability
Giannella, V.
2021-01-01
Abstract
Fatigue crack-growth of mechanical components is stochastic in nature and deterministic approaches do not allow for its complete study. Primary sources of this stochasticity can be: the inherent variability of material properties, the nature of service load fluctuations, the approximations assumed by the algorithms to calculate the main fracture parameters. This work reports a stochastic approach to the fatigue crack-growth in a railway axle under variability of different input parameters. The approach is used to predict the probability distribution of the residual fatigue life of a railway axle in presence of defects taking into account multiple sources of uncertainty.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.