The correct analysis of heat transport at nanoscale is one of the main reasons of new developments in physics and nonequilibrium thermodynamic theories beyond the classical Fourier law. In this paper, we provide a two-temperature model which allows to describe the different regimes which electrons and phonons can undergo in the heat transfer phenomenon. The physical admissibility of that model is showed in view of second law of thermodynamics. The above model is applied to study the propagation of heat waves in order to point out the special role played by nonlocal and nonlinear effects.
Nonlocal and nonlinear effects in hyperbolic heat transfer in a two-temperature model
Sellitto A.Writing – Original Draft Preparation
;Carlomagno I.
Writing – Original Draft Preparation
;Di Domenico M.Writing – Original Draft Preparation
2021
Abstract
The correct analysis of heat transport at nanoscale is one of the main reasons of new developments in physics and nonequilibrium thermodynamic theories beyond the classical Fourier law. In this paper, we provide a two-temperature model which allows to describe the different regimes which electrons and phonons can undergo in the heat transfer phenomenon. The physical admissibility of that model is showed in view of second law of thermodynamics. The above model is applied to study the propagation of heat waves in order to point out the special role played by nonlocal and nonlinear effects.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Sellitto2020_Article_NonlocalAndNonlinearEffectsInH.pdf
non disponibili
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
386.12 kB
Formato
Adobe PDF
|
386.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.