In social learning, agents form their opinions or beliefs about certain hypotheses by exchanging local information. This work considers the recent paradigm of weak graphs, where the network is partitioned into sending and receiving components, with the former having the possibility of exerting a domineering effect on the latter. Such graph structures are prevalent over social platforms. We will not be focusing on the direct social learning problem (which examines what agents learn), but rather on the dual or reverse learning problem (which examines how agents learned). Specifically, from observations of the stream of beliefs at certain agents, we would like to examine whether it is possible to learn the strength of the connections (influences) from sending components in the network to these receiving agents.

Learning Graph Influence from Social Interactions

Matta V.;
2020-01-01

Abstract

In social learning, agents form their opinions or beliefs about certain hypotheses by exchanging local information. This work considers the recent paradigm of weak graphs, where the network is partitioned into sending and receiving components, with the former having the possibility of exerting a domineering effect on the latter. Such graph structures are prevalent over social platforms. We will not be focusing on the direct social learning problem (which examines what agents learn), but rather on the dual or reverse learning problem (which examines how agents learned). Specifically, from observations of the stream of beliefs at certain agents, we would like to examine whether it is possible to learn the strength of the connections (influences) from sending components in the network to these receiving agents.
2020
978-1-5090-6631-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4756609
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact