Transient receptor potential melastatin 8 (TRPM8) ion channel represents a valuable pharmacological option for several therapeutic areas. Here, a series of conformationally restricted derivatives of the previously described TRPM8 antagonist N,N′-dibenzyl tryptophan 4 were prepared and characterized in vitro by Ca2+-imaging and patch-clamp electrophysiology assays. Molecular modeling studies led to identification of a broad and well-defined interaction network of these derivatives inside the TRPM8 binding site, underlying their antagonist activity. The (5R,11aS)-5-(4-chlorophenyl)-2-(4-fluorobenzyl)-5,6,11,11a-tetrahydro-1H-imidazo[1′,5′:1,6]pyrido[3,4-b]indole-1,3(2H)-dione (31a) emerged as a potent (IC50 = 4.10 ± 1.2 nM), selective, and metabolically stable TRPM8 antagonist. In vivo, 31a showed significant target coverage in an icilin-induced WDS (at 11.5 mg/kg ip), an oxaliplatin-induced cold allodynia (at 10-30 μg sc), and CCI-induced thermal hyperalgesia (at 11.5 mg/kg ip) mice models. These results confirm the tryptophan moiety as a solid pharmacophore template for the design of highly potent modulators of TRPM8-mediated activities.

Exploration of TRPM8 Binding Sites by β-Carboline-Based Antagonists and Their in Vitro Characterization and in Vivo Analgesic Activities

Bertamino A.;Di Sarno V.;Lauro G.;Ciaglia T.;Vestuto V.;Pepe G.;Basilicata M. G.;Musella S.;Smaldone G.;Bifulco G.
Membro del Collaboration Group
;
Campiglia P.
;
2020

Abstract

Transient receptor potential melastatin 8 (TRPM8) ion channel represents a valuable pharmacological option for several therapeutic areas. Here, a series of conformationally restricted derivatives of the previously described TRPM8 antagonist N,N′-dibenzyl tryptophan 4 were prepared and characterized in vitro by Ca2+-imaging and patch-clamp electrophysiology assays. Molecular modeling studies led to identification of a broad and well-defined interaction network of these derivatives inside the TRPM8 binding site, underlying their antagonist activity. The (5R,11aS)-5-(4-chlorophenyl)-2-(4-fluorobenzyl)-5,6,11,11a-tetrahydro-1H-imidazo[1′,5′:1,6]pyrido[3,4-b]indole-1,3(2H)-dione (31a) emerged as a potent (IC50 = 4.10 ± 1.2 nM), selective, and metabolically stable TRPM8 antagonist. In vivo, 31a showed significant target coverage in an icilin-induced WDS (at 11.5 mg/kg ip), an oxaliplatin-induced cold allodynia (at 10-30 μg sc), and CCI-induced thermal hyperalgesia (at 11.5 mg/kg ip) mice models. These results confirm the tryptophan moiety as a solid pharmacophore template for the design of highly potent modulators of TRPM8-mediated activities.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4756702
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact