The removal of heavy metal ions from industrial wastewater is essential as they pose serious threats to human health and the environment. In this study, novel poly(vinylidene fluoride) (PVDF)-alpha-zirconium phosphate (PVDF-α-ZrP) mixed matrix membranes (MMM) were prepared via the phase inversion method. Membranes with different α-ZrP nanoparticles (NPs) loadings (0.25, 0.50, 0.75, or 1.00 wt%) were fabricated. The impacts of α-ZrP NP loading on the membrane's morphology, functionality, surface charge, and hydrophilicity were evaluated. Fourier-transform infrared and the energy-dispersive X-ray spectroscopy were performed to verify the presence of α-ZrP NPs in the fabricated membranes. The PVDF membranes became more hydrophilic after incorporating the α-ZrP NPs. The thermal and mechanical stability and porosity of the PVDF-α-ZrP MMM were higher than those of the pristine PVDF membrane. The increased hydrophilicity, pore size and porosity and reduced surface roughness of the PVDF-α-ZrP membrane led to significant flux increase and reduced fouling propensity. The PVDF-α-ZrP membrane containing 1.00 wt% α-ZrP was capable of removing 42.8% (Cd2+), 93.1% (Cu2+), 44.4% (Ni2+), 91.2% (Pb2+), and 44.2% (Zn2+) from an aqueous solution at neutral pH during filtration.

Polyvinylidene fluoride (PVDF)-α-zirconium phosphate (α-ZrP) nanoparticles based mixed matrix membranes for removal of heavy metal ions

Kumar M.;Naddeo V.;
2021-01-01

Abstract

The removal of heavy metal ions from industrial wastewater is essential as they pose serious threats to human health and the environment. In this study, novel poly(vinylidene fluoride) (PVDF)-alpha-zirconium phosphate (PVDF-α-ZrP) mixed matrix membranes (MMM) were prepared via the phase inversion method. Membranes with different α-ZrP nanoparticles (NPs) loadings (0.25, 0.50, 0.75, or 1.00 wt%) were fabricated. The impacts of α-ZrP NP loading on the membrane's morphology, functionality, surface charge, and hydrophilicity were evaluated. Fourier-transform infrared and the energy-dispersive X-ray spectroscopy were performed to verify the presence of α-ZrP NPs in the fabricated membranes. The PVDF membranes became more hydrophilic after incorporating the α-ZrP NPs. The thermal and mechanical stability and porosity of the PVDF-α-ZrP MMM were higher than those of the pristine PVDF membrane. The increased hydrophilicity, pore size and porosity and reduced surface roughness of the PVDF-α-ZrP membrane led to significant flux increase and reduced fouling propensity. The PVDF-α-ZrP membrane containing 1.00 wt% α-ZrP was capable of removing 42.8% (Cd2+), 93.1% (Cu2+), 44.4% (Ni2+), 91.2% (Pb2+), and 44.2% (Zn2+) from an aqueous solution at neutral pH during filtration.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4757782
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 51
social impact