OBJECTIVE: Heart anomalies represent nearly one-third of all congenital anomalies. They are currently diagnosed using ultrasound. However, there is a strong need for a more accurate and less operator-dependent screening method. Here we report a metabolomics characterization of maternal serum in order to describe a metabolomic fingerprint representative of heart congenital anomalies.METHODS: Metabolomic profiles were obtained from serum of 350 mothers (280 controls and 70 cases). Nine classification models were built and optimized. An ensemble model was built based on the results from the individual models.RESULTS: The ensemble machine learning model correctly classified all cases and controls. Malonic, 3-hydroxybutyric and methyl glutaric acid, urea, androstenedione, fructose, tocopherol, leucine and putrescine were determined as the most relevant metabolites in class separation.CONCLUSION: The metabolomic signature of second trimester maternal serum from pregnancies affected by a fetal heart anomaly is quantifiably different from that of a normal pregnancy. Maternal serum metabolomics is a promising tool for the accurate and sensitive screening of such congenital defects. Moreover, the revelation of the associated metabolites and their respective biochemical pathways allows a better understanding of the overall pathophysiology of affected pregnancies. This article is protected by copyright. All rights reserved.

Noninvasive screening for congenital heart defects using a serum metabolomics approach

Troisi, Jacopo
;
Cavallo, Pierpaolo;Colucci, Angelo;Landolfi, Annamaria;Guida, Maurizio
2021

Abstract

OBJECTIVE: Heart anomalies represent nearly one-third of all congenital anomalies. They are currently diagnosed using ultrasound. However, there is a strong need for a more accurate and less operator-dependent screening method. Here we report a metabolomics characterization of maternal serum in order to describe a metabolomic fingerprint representative of heart congenital anomalies.METHODS: Metabolomic profiles were obtained from serum of 350 mothers (280 controls and 70 cases). Nine classification models were built and optimized. An ensemble model was built based on the results from the individual models.RESULTS: The ensemble machine learning model correctly classified all cases and controls. Malonic, 3-hydroxybutyric and methyl glutaric acid, urea, androstenedione, fructose, tocopherol, leucine and putrescine were determined as the most relevant metabolites in class separation.CONCLUSION: The metabolomic signature of second trimester maternal serum from pregnancies affected by a fetal heart anomaly is quantifiably different from that of a normal pregnancy. Maternal serum metabolomics is a promising tool for the accurate and sensitive screening of such congenital defects. Moreover, the revelation of the associated metabolites and their respective biochemical pathways allows a better understanding of the overall pathophysiology of affected pregnancies. This article is protected by copyright. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
2021 Noninvasive screening for congenital heart defects.pdf

non disponibili

Descrizione: VoR
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Copyright dell'editore
Dimensione 953.18 kB
Formato Adobe PDF
953.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
pd5893-sup.pdf

non disponibili

Descrizione: Supplemental material
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Copyright dell'editore
Dimensione 2.98 MB
Formato Adobe PDF
2.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Non-invasive screening for congenital heart defects NO LOGO NO TEXTS.pdf

Open Access dal 14/02/2022

Descrizione: AAM
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Copyright dell'editore
Dimensione 365.58 kB
Formato Adobe PDF
365.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4758182
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact