We study the implications of the generalized uncertainty principle (GUP) with a minimal measurable length on some quantum mechanical interferometry phenomena, such as the Aharonov–Bohm, Aharonov–Casher, COW and Sagnac effects. By resorting to a modified Schrödinger equation, we evaluate the lowest-order correction to the phase shift of the interference pattern within two different GUP frameworks: the first one is characterized by the redefinition of the physical momentum only, and the other is a Lorentz covariant GUP which also predicts non-commutativity of spacetime. The obtained results allow us to fix upper bounds on the GUP deformation parameters which may be tested through future high-precision interferometry experiments.
Generalized uncertainty principle and its implications on geometric phases in quantum mechanics
Luciano, Giuseppe Gaetano
;Petruzziello, Luciano
2021-01-01
Abstract
We study the implications of the generalized uncertainty principle (GUP) with a minimal measurable length on some quantum mechanical interferometry phenomena, such as the Aharonov–Bohm, Aharonov–Casher, COW and Sagnac effects. By resorting to a modified Schrödinger equation, we evaluate the lowest-order correction to the phase shift of the interference pattern within two different GUP frameworks: the first one is characterized by the redefinition of the physical momentum only, and the other is a Lorentz covariant GUP which also predicts non-commutativity of spacetime. The obtained results allow us to fix upper bounds on the GUP deformation parameters which may be tested through future high-precision interferometry experiments.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.