In this work, monolayer molybdenum disulfide (MoS2) nanosheets, obtained via chemical vapor deposition onto SiO2/Si substrates, are exploited to fabricate field-effect transistors with n-type conduction, high on/off ratio, steep subthreshold slope and good mobility. We study their electric characteristics from 10-6 Torr to atmospheric air pressure. We show that the threshold voltage of the transistor increases with the growing pressure. Moreover, Schottky metal contacts in monolayer MoS2 field-effect transistors (FETs) are investigated under electron beam irradiation. It is shown that the exposure of Ti/Au source/drain electrodes to an electron beam reduces the contact resistance and improves the transistor performance. The electron beam conditioning of contacts is permanent, while the irradiation of the channel can produce transient effects. It is shown that e-beam irradiation lowers the Schottky barrier at the contacts due to thermally induced atom diffusion and interfacial reactions. The study demonstrates that electron beam irradiation can be effectively used for contact improvement though local annealing. It is also demonstrated that the application of an external field by a metallic nanotip induces a field emission current, which can be modulated by the voltage applied to the Si substrate back-gate. Such a finding, that we attribute to gate-bias lowering of the MoS2 electron affinity, enables a new field-effect transistor based on field emission.

Molibdenum Disulfide Field Effect Transistor under Electron Beam Irradiation and External Electric Field

Pelella, Aniello
Writing – Original Draft Preparation
;
Grillo, Alessandro
Investigation
;
Faella, Enver
Investigation
;
Giubileo, Filippo
Validation
;
Urban, Francesca
Investigation
;
Di Bartolomeo, Antonio
Writing – Review & Editing
2020-01-01

Abstract

In this work, monolayer molybdenum disulfide (MoS2) nanosheets, obtained via chemical vapor deposition onto SiO2/Si substrates, are exploited to fabricate field-effect transistors with n-type conduction, high on/off ratio, steep subthreshold slope and good mobility. We study their electric characteristics from 10-6 Torr to atmospheric air pressure. We show that the threshold voltage of the transistor increases with the growing pressure. Moreover, Schottky metal contacts in monolayer MoS2 field-effect transistors (FETs) are investigated under electron beam irradiation. It is shown that the exposure of Ti/Au source/drain electrodes to an electron beam reduces the contact resistance and improves the transistor performance. The electron beam conditioning of contacts is permanent, while the irradiation of the channel can produce transient effects. It is shown that e-beam irradiation lowers the Schottky barrier at the contacts due to thermally induced atom diffusion and interfacial reactions. The study demonstrates that electron beam irradiation can be effectively used for contact improvement though local annealing. It is also demonstrated that the application of an external field by a metallic nanotip induces a field emission current, which can be modulated by the voltage applied to the Si substrate back-gate. Such a finding, that we attribute to gate-bias lowering of the MoS2 electron affinity, enables a new field-effect transistor based on field emission.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4758788
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact