Computational Fluid Dynamics simulations of planing hulls are generally considered less reliable than simulations of displacement hulls. This is due to the flow complexity around planing hulls, especially in the bow region, where the sprays are formed. The recent and constant increasing of computational capabilities allows simulating planing hull features, with more accurate turbulence models and advanced meshing procedures. However, mesh-based approaches based on the finite volume methods have shown to be limited in capturing all the phenomena around a planing hull. As such, the focus of this study is on evaluating the ability of the Smoothed Particle Hydrodynamics mesh-less method to numerically solve the 3-D flow around a planing hull and simulate more accurately the spray structures, which is a rather challenging task to be performed with mesh-based tools. A novel application of the DualSPHysics code for simulating a planing hull resistance test has been proposed and applied to the parent hull of the Naples warped planing hull Systematic Series. The drag and the running attitudes (heave and dynamic trim angle) are computed for a wide range of Froude’s numbers and discussed concerning experimental values.
Performance Assessment of a Planing Hull Using the Smoothed Particle Hydrodynamics Method
Tagliafierro, BonaventuraMembro del Collaboration Group
;Viccione, GiacomoMembro del Collaboration Group
2021-01-01
Abstract
Computational Fluid Dynamics simulations of planing hulls are generally considered less reliable than simulations of displacement hulls. This is due to the flow complexity around planing hulls, especially in the bow region, where the sprays are formed. The recent and constant increasing of computational capabilities allows simulating planing hull features, with more accurate turbulence models and advanced meshing procedures. However, mesh-based approaches based on the finite volume methods have shown to be limited in capturing all the phenomena around a planing hull. As such, the focus of this study is on evaluating the ability of the Smoothed Particle Hydrodynamics mesh-less method to numerically solve the 3-D flow around a planing hull and simulate more accurately the spray structures, which is a rather challenging task to be performed with mesh-based tools. A novel application of the DualSPHysics code for simulating a planing hull resistance test has been proposed and applied to the parent hull of the Naples warped planing hull Systematic Series. The drag and the running attitudes (heave and dynamic trim angle) are computed for a wide range of Froude’s numbers and discussed concerning experimental values.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.