Tuning of electronic density-of-states singularities is a common route to unconventional metal physics. Conceptually, van Hove singularities are realized only in clean two-dimensional systems. Little attention has therefore been given to the disordered (dirty) limit. Here, we provide a magnetotransport study of the dirty metamagnetic system calcium-doped strontium ruthenate. Fermi liquid properties persist across the metamagnetic transition, but with an unusually strong variation of the Kadowaki-Woods ratio. This is revealed by a strong decoupling of inelastic electron scattering and electronic mass inferred from density-of-state probes. We discuss this Fermi liquid behavior in terms of a magnetic field tunable van Hove singularity in the presence of disorder. More generally, we show how dimensionality and disorder control the fate of transport properties across metamagnetic transitions.

Magnetotransport of dirty-limit van Hove singularity quasiparticles

Granata V.
Membro del Collaboration Group
;
2021-01-01

Abstract

Tuning of electronic density-of-states singularities is a common route to unconventional metal physics. Conceptually, van Hove singularities are realized only in clean two-dimensional systems. Little attention has therefore been given to the disordered (dirty) limit. Here, we provide a magnetotransport study of the dirty metamagnetic system calcium-doped strontium ruthenate. Fermi liquid properties persist across the metamagnetic transition, but with an unusually strong variation of the Kadowaki-Woods ratio. This is revealed by a strong decoupling of inelastic electron scattering and electronic mass inferred from density-of-state probes. We discuss this Fermi liquid behavior in terms of a magnetic field tunable van Hove singularity in the presence of disorder. More generally, we show how dimensionality and disorder control the fate of transport properties across metamagnetic transitions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4764166
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 4
social impact