Nine new limonoids (1-9) were isolated from the stem bark of Guarea guidonia (1-4) and Cedrela odorata (5-9). Their structures were elucidated using 1D and 2D NMR and MS data and chemical methods as three A2,B,D-seco-type limonoids (1-3), a mexicanolide (4), three nomilin-type (5-7) limonoids, and two limonol derivatives (8 and 9). A DFT/NMR procedure was used to define the relative configurations of 1 and 3. A surface plasmon resonance approach was used to screen the Hsp90 binding capability of the limonoids, and the A2,B,D-seco-type limonoid 8-hydro-(8S∗,9S∗)-dihydroxy-14,15-en-chisomicine A, named chisomicine D (1), demonstrated the highest affinity. By means of mass spectrometry data, biochemical and cellular assays, and molecular docking, 1 was found as a type of client-selective Hsp90 inhibitor binding to the C-terminus domain of the chaperone.
Limonoids from Guarea guidonia and Cedrela odorata: Heat Shock Protein 90 (Hsp90) modulator properties of chisomicine D
Bellone M. L.;Chini M. G.;Dal Piaz F.;Bifulco G.;De Tommasi N.
;
2021-01-01
Abstract
Nine new limonoids (1-9) were isolated from the stem bark of Guarea guidonia (1-4) and Cedrela odorata (5-9). Their structures were elucidated using 1D and 2D NMR and MS data and chemical methods as three A2,B,D-seco-type limonoids (1-3), a mexicanolide (4), three nomilin-type (5-7) limonoids, and two limonol derivatives (8 and 9). A DFT/NMR procedure was used to define the relative configurations of 1 and 3. A surface plasmon resonance approach was used to screen the Hsp90 binding capability of the limonoids, and the A2,B,D-seco-type limonoid 8-hydro-(8S∗,9S∗)-dihydroxy-14,15-en-chisomicine A, named chisomicine D (1), demonstrated the highest affinity. By means of mass spectrometry data, biochemical and cellular assays, and molecular docking, 1 was found as a type of client-selective Hsp90 inhibitor binding to the C-terminus domain of the chaperone.File | Dimensione | Formato | |
---|---|---|---|
np0c01217.pdf
Open Access dal 11/04/2022
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.41 MB
Formato
Adobe PDF
|
4.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.