Mesoglycan is a mixture of glycosaminoglycans (GAG) with fibrinolytic effects and the potential to enhance skin wound repair. Here, we have used endothelial cells isolated from wild-type (WT) and Syndecan-4 null (Sdc4-/-) C57BL/6 mice to demonstrate that mesoglycan promotes cell motility and in vitro angiogenesis acting on the co-receptor Syndecan-4 (SDC4). This latter is known to participate in the formation and release of extracellular vesicles (EVs). We characterized EVs released by HUVECs and assessed their effect on angiogenesis. Particularly, we focused on Annexin A1 (ANXA1) containing EVs, since they may contribute to tube formation via interactions with Formyl peptide receptors (FPRs). In our model, the bond ANXA1-FPRs stimulates the release of vascular endothelial growth factor (VEGF-A) that interacts with vascular endothelial receptor-2 (VEGFR2) and activates the pathway enhancing cell motility in an autocrine manner, as shown by wound healing/invasion assays, and the induction of endothelial to mesenchymal transition (EndMT). Thus, we have shown for the first time that mesoglycan exerts its pro-angiogenic effects in the healing process triggering the activation of the three interconnected molecular axis: mesoglycan-SDC4, EVs-ANXA1-FPRs, and VEGF-A-VEGFR2.

Mesoglycan connects Syndecan-4 and VEGFR2 through Annexin A1 and formyl peptide receptors to promote angiogenesis in vitro

Pessolano E.;Belvedere R.;Novizio N.;Filippelli A.;Petrella A.
Supervision
2021

Abstract

Mesoglycan is a mixture of glycosaminoglycans (GAG) with fibrinolytic effects and the potential to enhance skin wound repair. Here, we have used endothelial cells isolated from wild-type (WT) and Syndecan-4 null (Sdc4-/-) C57BL/6 mice to demonstrate that mesoglycan promotes cell motility and in vitro angiogenesis acting on the co-receptor Syndecan-4 (SDC4). This latter is known to participate in the formation and release of extracellular vesicles (EVs). We characterized EVs released by HUVECs and assessed their effect on angiogenesis. Particularly, we focused on Annexin A1 (ANXA1) containing EVs, since they may contribute to tube formation via interactions with Formyl peptide receptors (FPRs). In our model, the bond ANXA1-FPRs stimulates the release of vascular endothelial growth factor (VEGF-A) that interacts with vascular endothelial receptor-2 (VEGFR2) and activates the pathway enhancing cell motility in an autocrine manner, as shown by wound healing/invasion assays, and the induction of endothelial to mesenchymal transition (EndMT). Thus, we have shown for the first time that mesoglycan exerts its pro-angiogenic effects in the healing process triggering the activation of the three interconnected molecular axis: mesoglycan-SDC4, EVs-ANXA1-FPRs, and VEGF-A-VEGFR2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4766863
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact