Many recent research studies focused on the development of innovative seismic resilient structures by chasing the objectives of minimising both seismic damage and repair time, hence allowing the definition of structures able to go back to the undamaged, fully functional condition, in a short time. In this context, the present study investigates an innovative type of self-centring damage-free steel column base (CB) connection and its beneficial effects when used within steel moment-resisting frames (MRFs). The proposed connection consists of a rocking column equipped with a combination of friction devices, providing energy dissipation capacity, and post-tensioned bars with disk springs, introducing restoring forces in the joint. Contrary to conventional steel CBs, the proposed connection exhibits moment–rotation behaviours that can be described by simple analytical equations, allowing the definition of an easy-to-apply design procedure. Numerical models of the connection, developed in OpenSees, are validated against experimental results and successively implemented within a four-storey case study steel MRF. Incremental Dynamic Analyses are performed to derive the samples of the demand for the engineering demand parameters of interest while accounting for the record-to-record variability. Fragility Curves show the effectiveness of the proposed solution in reducing the residual storey drifts and in protecting the first-storey columns from damage, hence providing significant advantages in terms of repairability, and hence resilience of the structure with a negligible increase on the overall cost. The results show that the damage-free behaviour of the CBs is a key requirement when self-centring of MRFs is a design objective.
Design and analysis of a seismic resilient steel moment resisting frame equipped with damage-free self-centering column bases
Elettore E.;Latour M.;Rizzano G.
2021-01-01
Abstract
Many recent research studies focused on the development of innovative seismic resilient structures by chasing the objectives of minimising both seismic damage and repair time, hence allowing the definition of structures able to go back to the undamaged, fully functional condition, in a short time. In this context, the present study investigates an innovative type of self-centring damage-free steel column base (CB) connection and its beneficial effects when used within steel moment-resisting frames (MRFs). The proposed connection consists of a rocking column equipped with a combination of friction devices, providing energy dissipation capacity, and post-tensioned bars with disk springs, introducing restoring forces in the joint. Contrary to conventional steel CBs, the proposed connection exhibits moment–rotation behaviours that can be described by simple analytical equations, allowing the definition of an easy-to-apply design procedure. Numerical models of the connection, developed in OpenSees, are validated against experimental results and successively implemented within a four-storey case study steel MRF. Incremental Dynamic Analyses are performed to derive the samples of the demand for the engineering demand parameters of interest while accounting for the record-to-record variability. Fragility Curves show the effectiveness of the proposed solution in reducing the residual storey drifts and in protecting the first-storey columns from damage, hence providing significant advantages in terms of repairability, and hence resilience of the structure with a negligible increase on the overall cost. The results show that the damage-free behaviour of the CBs is a key requirement when self-centring of MRFs is a design objective.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.