Transition metal oxides can be performant electrode materials for supercapacitors and alcohol oxidation if their conductivity and capacity are improved. Herein, an advanced nanocomposite material made of NiO-Co3O4 on reduced graphene oxide (rGO) is synthesized by a one-step hydrothermal method for supercapacitors and methanol/ethanol oxidation. It is demonstrated that the nanocomposite is a promising material for energy storage as NiO-Co3O4-rGO supercapacitor electrodes achieve a specific capacity of 149 mAh g−1 (894 F g−1) at a current density of 0.5 A g−1, the discharge time of 689 s, and excellent stability of 95% after 6000 cycles. Moreover, NiO-Co3O4-rGO shows a current density of 15 and 10 mA cm−2 in methanol and ethanol oxidation reactions, respectively, along with excellent stability.
NiO-Co3O4-rGO as an Efficient Electrode Material for Supercapacitors and Direct Alcoholic Fuel Cells
Di Bartolomeo A.
Writing – Review & Editing
2021-01-01
Abstract
Transition metal oxides can be performant electrode materials for supercapacitors and alcohol oxidation if their conductivity and capacity are improved. Herein, an advanced nanocomposite material made of NiO-Co3O4 on reduced graphene oxide (rGO) is synthesized by a one-step hydrothermal method for supercapacitors and methanol/ethanol oxidation. It is demonstrated that the nanocomposite is a promising material for energy storage as NiO-Co3O4-rGO supercapacitor electrodes achieve a specific capacity of 149 mAh g−1 (894 F g−1) at a current density of 0.5 A g−1, the discharge time of 689 s, and excellent stability of 95% after 6000 cycles. Moreover, NiO-Co3O4-rGO shows a current density of 15 and 10 mA cm−2 in methanol and ethanol oxidation reactions, respectively, along with excellent stability.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.