The presence downstream of a dam of either rigid or erodible obstacles may strongly affect the flood wave propagation, and this complex interaction may lead to further dramatic consequences on people and structures. The open-source Lagrangian-based DualSPHysics solver was used to simulate a three-dimensional dam-break in a closed domain including an oriented obstacle that deflects the flow, thus increasing the complexity of fluid dynamics. By comparing numerical results with experimental data, the effectiveness of the model was evaluated and demonstrated with an extensive sensitivity analysis based on several parameters crucial to the smoothed particle hydrodynamics method, such as the resolution, the boundary conditions, and the properties of the interaction weight function. Charts and summary tables highlight the most suitable conditions for simulating such occurrences in the DualSPHysics framework. The presence of the obstacle, being also an opportunity for observation and study of complex fluid dynamics, opens the way to investigate the fluid interaction with solid objects involved in dam-break events and, possibly, to predict their effect with respect to the relative position between them and the flood and other relevant parameters. Finally, the numerical model presents a good overall agreement.

A Numerical Validation of 3D Experimental Dam-Break Wave Interaction with a Sharp Obstacle Using DualSPHysics

Capasso, Salvatore
Membro del Collaboration Group
;
Tagliafierro, Bonaventura
Membro del Collaboration Group
;
Viccione, Giacomo
Membro del Collaboration Group
;
2021-01-01

Abstract

The presence downstream of a dam of either rigid or erodible obstacles may strongly affect the flood wave propagation, and this complex interaction may lead to further dramatic consequences on people and structures. The open-source Lagrangian-based DualSPHysics solver was used to simulate a three-dimensional dam-break in a closed domain including an oriented obstacle that deflects the flow, thus increasing the complexity of fluid dynamics. By comparing numerical results with experimental data, the effectiveness of the model was evaluated and demonstrated with an extensive sensitivity analysis based on several parameters crucial to the smoothed particle hydrodynamics method, such as the resolution, the boundary conditions, and the properties of the interaction weight function. Charts and summary tables highlight the most suitable conditions for simulating such occurrences in the DualSPHysics framework. The presence of the obstacle, being also an opportunity for observation and study of complex fluid dynamics, opens the way to investigate the fluid interaction with solid objects involved in dam-break events and, possibly, to predict their effect with respect to the relative position between them and the flood and other relevant parameters. Finally, the numerical model presents a good overall agreement.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4768348
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 6
social impact