Recent research on photocathodes for photoinjectors has focused on the understanding of the photoemission process at low energy (i.e. at photon energy close to the material’s work function) as well as on the study of ordered and innovative photocathode materials, with the aim of minimizing the emittance at the cathode. We here present a preliminary study on low energy photoemission from (100) oriented Ba1−xLaxSnO3 thin films, characterizing their quantum efficiency and the mean transverse energy of the photoelectrons. The aim of the study is to pave the way for future experiments on innovative photocathodes based on perovkite oxides.
Low energy photoemission from (100) Ba1−xLaxSnO3 thin films for photocathode applications
Galdi A.
Writing – Original Draft Preparation
;
2019-01-01
Abstract
Recent research on photocathodes for photoinjectors has focused on the understanding of the photoemission process at low energy (i.e. at photon energy close to the material’s work function) as well as on the study of ordered and innovative photocathode materials, with the aim of minimizing the emittance at the cathode. We here present a preliminary study on low energy photoemission from (100) oriented Ba1−xLaxSnO3 thin films, characterizing their quantum efficiency and the mean transverse energy of the photoelectrons. The aim of the study is to pave the way for future experiments on innovative photocathodes based on perovkite oxides.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.