Ascertaining the impact of research is significant for the research community and academia of all disciplines. The only prevalent measure associated with the quantification of research quality is the citation-count. Although a number of citations play a significant role in academic research, sometimes citations can be biased or made to discuss only the weaknesses and shortcomings of the research. By considering the sentiment of citations and recognizing patterns in text can aid in understanding the opinion of the peer research community and will also help in quantifying the quality of research articles. Efficient feature representation combined with machine learning classifiers has yielded significant improvement in text classification. However, the effectiveness of such combinations has not been analyzed for citation sentiment analysis. This study aims to investigate pattern recognition using machine learning models in combination with frequency-based and prediction-based feature representation techniques with and without using Synthetic Minority Oversampling Technique (SMOTE) on publicly available citation sentiment dataset. Sentiment of citation instances are classified into positive, negative or neutral. Results indicate that the Extra tree classifier in combination with Term Frequency-Inverse Document Frequency achieved 98.26% accuracy on the SMOTE-balanced dataset.

Scientific papers citation analysis using textual features and SMOTE resampling techniques

NAPPI M.
2021-01-01

Abstract

Ascertaining the impact of research is significant for the research community and academia of all disciplines. The only prevalent measure associated with the quantification of research quality is the citation-count. Although a number of citations play a significant role in academic research, sometimes citations can be biased or made to discuss only the weaknesses and shortcomings of the research. By considering the sentiment of citations and recognizing patterns in text can aid in understanding the opinion of the peer research community and will also help in quantifying the quality of research articles. Efficient feature representation combined with machine learning classifiers has yielded significant improvement in text classification. However, the effectiveness of such combinations has not been analyzed for citation sentiment analysis. This study aims to investigate pattern recognition using machine learning models in combination with frequency-based and prediction-based feature representation techniques with and without using Synthetic Minority Oversampling Technique (SMOTE) on publicly available citation sentiment dataset. Sentiment of citation instances are classified into positive, negative or neutral. Results indicate that the Extra tree classifier in combination with Term Frequency-Inverse Document Frequency achieved 98.26% accuracy on the SMOTE-balanced dataset.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4769643
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 24
social impact