Background: Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis. Methods: Magnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis. Results: The investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83–0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%. Conclusions: In conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation.

Multiple Sclerosis lesions detection by a hybrid Watershed-Clustering algorithm

Bramanti A.;
2021-01-01

Abstract

Background: Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis. Methods: Magnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis. Results: The investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non-lesions; the diagnostic accuracy was 87% (95% CI: 0.83–0.90), with an appropriate cut-off of 192.8; the sensitivity was 77% and the specificity was 87%. Conclusions: In conclusion, we developed a CAD system by using a modified algorithm for automated image segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection out-put that may be support the clinical evaluation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4769924
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact