The origin of inertia of macroscopic bodies has never been thoroughly elucidated. In this paper we provide a new explanation based on the following assumptions: (i) we can think of any body as being composed by resonant parts of Planck size, (ii) inertia arises from the interaction among these elementary constituents and quantum fluctuations. In compliance with such prescription, we propose two frameworks within which inertia can be modeled. The first one relies on the direct application of Heisenberg Uncertainty Principle to the fluctuations nearby a body, the other involves the asymmetric (Casimir-like) damping of the radiation experienced by an accelerated object due to the appearance of a Rindler horizon. Consistency between the two approaches is then discussed.

Modeling inertia through the interaction with quantum fluctuations

Luciano G. G.
2021-01-01

Abstract

The origin of inertia of macroscopic bodies has never been thoroughly elucidated. In this paper we provide a new explanation based on the following assumptions: (i) we can think of any body as being composed by resonant parts of Planck size, (ii) inertia arises from the interaction among these elementary constituents and quantum fluctuations. In compliance with such prescription, we propose two frameworks within which inertia can be modeled. The first one relies on the direct application of Heisenberg Uncertainty Principle to the fluctuations nearby a body, the other involves the asymmetric (Casimir-like) damping of the radiation experienced by an accelerated object due to the appearance of a Rindler horizon. Consistency between the two approaches is then discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4769974
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact