The synthesis of calix[4]- and -[6]arene derivatives P6(H)22+·(Cl-)2, V4(H)24+·(Cl-)2·(I-)2, and V6(H)24+·(Cl-)2·(I-)2 bearing N-linked pyridinium (P) and viologen (V) units at the upper rim is described here. A rare example of an anionic conformational template is reported for p-pyridiniumcalix[6]arene P6(H)22+, which adopts a 1,3,5-alternate conformation in the presence of chloride anions. Derivatives P6(H)22+·(Cl-)2, V6(H)24+·(Cl-)2·(I-)2, and V4(H)24+·(Cl-)2·(I-)2 show a negative solvatochromism, while their UV-vis acid-base titration evidenced that upon addition of a base, new bands appear at 487, 583, and 686 nm, respectively, due to the formation of betainic monodeprotonated species P6(H)1+, V6(H)13+, and V4(H)13+. These new bands were attributable to the intramolecular charge-transfer (CT) transition from the phenoxide to the pyridinium or viologen moiety and were responsive to the presence of cations. In fact, the band at 487 nm of P6(H)1+ was quenched in the presence of a hard Li+ cation, and the color of its acetonitrile solution was changed from pink to colorless upon addition of LiI. Consequently, this derivative can be considered as a useful host for the recognition and sensing of lithium cations.

Chromogenic Properties of p-Pyridinium- And p-Viologen-Calixarenes and Their Cation-Sensing Abilities

Iuliano V.;Della Sala P.;Talotta C.
;
Gaeta C.;Neri P.
2021-01-01

Abstract

The synthesis of calix[4]- and -[6]arene derivatives P6(H)22+·(Cl-)2, V4(H)24+·(Cl-)2·(I-)2, and V6(H)24+·(Cl-)2·(I-)2 bearing N-linked pyridinium (P) and viologen (V) units at the upper rim is described here. A rare example of an anionic conformational template is reported for p-pyridiniumcalix[6]arene P6(H)22+, which adopts a 1,3,5-alternate conformation in the presence of chloride anions. Derivatives P6(H)22+·(Cl-)2, V6(H)24+·(Cl-)2·(I-)2, and V4(H)24+·(Cl-)2·(I-)2 show a negative solvatochromism, while their UV-vis acid-base titration evidenced that upon addition of a base, new bands appear at 487, 583, and 686 nm, respectively, due to the formation of betainic monodeprotonated species P6(H)1+, V6(H)13+, and V4(H)13+. These new bands were attributable to the intramolecular charge-transfer (CT) transition from the phenoxide to the pyridinium or viologen moiety and were responsive to the presence of cations. In fact, the band at 487 nm of P6(H)1+ was quenched in the presence of a hard Li+ cation, and the color of its acetonitrile solution was changed from pink to colorless upon addition of LiI. Consequently, this derivative can be considered as a useful host for the recognition and sensing of lithium cations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4770386
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact