This study concerns with the diagnosis of aerospace structure defects by applying a HPC parallel implementation of a novel learning algorithm, named U-BRAIN. The Soft Computing approach allows advanced multi-parameter data processing in composite materials testing. The HPC parallel implementation overcomes the limits due to the great amount of data and the complexity of data processing. Our experimental results illustrate the effectiveness of the U-BRAIN parallel implementation as defect classifier in aerospace structures. The resulting system is implemented on a Linux-based cluster with multi-core architecture.

Diagnosis of aerospace structure defects by a HPC implemented soft computing algorithm

D'Angelo, G
;
2014-01-01

Abstract

This study concerns with the diagnosis of aerospace structure defects by applying a HPC parallel implementation of a novel learning algorithm, named U-BRAIN. The Soft Computing approach allows advanced multi-parameter data processing in composite materials testing. The HPC parallel implementation overcomes the limits due to the great amount of data and the complexity of data processing. Our experimental results illustrate the effectiveness of the U-BRAIN parallel implementation as defect classifier in aerospace structures. The resulting system is implemented on a Linux-based cluster with multi-core architecture.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4771249
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact